The Evolution of TCP Transport
Protocols

Geoff Huston AM

APNIC Labs

November 1859 I]

oN

Charles D_arwin published a mor_1u_menta| work THE ORIGIN OF SPECIES
that described a theory of the origins of the
diversity of life through a process of natural

BY NEANS OF NATURAL SELECTION,

selection, a finding initially jointly authored in a \
paper by Alfred Wallace and Charles Darwin TS el e

It described a natural process that.is
commonly corrupted as “survival of the fittest”

By CHARLES DARWIN, M,

AW O T W AL, SRRSO L, LK KA, FTE, RTETTN

It's not just the living world where we observe
these evolutionary pressures

LOXDON:
JONN MUREAY, ALREMARL)

The Evolution of Speed

1980’s

— TCP rates of Kilobits per second
1990’s

— TCP rates of Megabits per second
2000’s

— TCP rates of Gigabits per second
2010’s

— TCP rates of tens of Gigabits per second
2020's

— TCP rates of tens of Gigabits per second

80’s

90’s

00’s

10’s

20’s

The Evolution of Speed

1980’s

— TCP rates of Kilobits per second
1990’s

— TCP rates of Megabits per second
2000’s

— TCP rates of Gigabits per second
2010’s

— TCP rates of tens of Gigabits per second
2020's ?

— TCP rates of tens of Gigabits per second

80’s

90’s

00’s

10’s

20’s

Today

* Optical transmission speeds
are now edging into multi-
Terabit capacity

* But peak TCP session
speeds across the network
are not keeping up

* Why not?

o

G

80’s

90’s

00’s

10’s

20’s

TCP is the Internet

« The Transmission Control Protocol is an end-to-end
protocol that creates a reliable stream protocol from the
underlying IP datagram device

* This single protocol is the “beating heart” at the core of
the Internet

« TCP operates as an adaptive rate control protocol that
attempts to operate efficiently and fairly

TCP Performance Objectives

To maintain an average flow which is both Efficient and Fair
Efficient:

— Minimise packet loss

— Minimise packet re-ordering

— Do not leave unused path bandwidth on the table!
Fair:

— Do not crowd out other TCP sessions

— Qver time, take an average 1/N of the path capacity when there are
N other TCP sessions sharing the same path

It’s a Flow Control process

* Think of this as a multi-
flow fluid dynamics
problem

« Each flow has to gently
exert pressure on the
other flows to signal
them to provide a fair
share of the network,
and be responsive to
the pressure from all
other flows

TCP Control

TCP is an ACK Pacing protocol

If the sender sends one packet each time it receives an ACK, then the sender will
maintain a steady number of packets in flight within the network

P,
Seeder S~

Data sending rate is matched to the ACK arrival
rate

TCP Control

 |deally TCP would send packets at a fair share of available
network capacity. But the TCP sender has no idea what
“available network capacity” means.

« So, TCP uses ‘rate adaptation’ to probe into network,
Increasing the sending rate until it receives a signal that the

sending rate is ‘too fast’

« We've been experimenting with various forms of TCP rate
adaptation for decades!

“Classic TCP” — TCP Reno

« Additive Increase Multiplicative Decrease (AIMD)

— While there is no packet loss, increase the sending rate by one
segment (MSS) each RTT interval

— If there is packet loss (detected by duplicate ACKs) pause for 1xRTT
and decrease the sending rate by 50% over the next RTT Interval by
halving the sender’s send window

« Start Up
— Each RTT interval, double the sending rate
— We call this “slow start” — probably because its anything but slow!!!

The Classic TCP Picture

Qenang Rate / Sender Window

7

Queue formation

Packed Loss

C ongestion
Avoidance

Queue drain

Q(\k \'\Q\V'\(\s

C ongestion
Avo\dance

Qender’s wndow recovery \nterval
AT
‘ S

T‘\\MQ

Changing TCP’s control algorithm

 The TCP packet format is invariant

» But the control algorithm can vary

« What defines a “fitter” control algorithm?
— Be no less ‘aggressive’ than everyone else
— Try to exploit opportunities that others do not

— But don’t destroy the environment (network)

Carriage Service Challenges

* Radio system with non-congestion loss behaviours

LEO satellite services with very high jitter elements

Very high bandwidth services pose a challenge to linear
rate increase

How to take advantage of equal-cost multi path frameworks

Session “pulsing” used by streaming services

CUBIC

« CUBIC is designed to be useful for high-speed sessions while still
being ‘fair’ to other sessions and also be efficient even at lower speeds

« Rather than probe in a linear manner for the sending rate that triggers
packet loss, CUBIC uses a non-linear (cubic) search algorithm

0000000

0000000

CUBIC and Queue formation

250000 T T T T T T
CUBIC s
CUBIC Queue Size
200000 B
150000 |

Total Queue Capacity Network Buffers Fill

(Onset of Packet Loss) 0 !! Q

Link Capacity Capacity 100000
(Onset of Queuing)

Network Buffers Drain

50000

20 40 60 80 100 120 140

CUBIC assessment

« Can react quickly to available capacity in the network

* Tends to sit for extended periods in the phase of queue
formation

« Can react efficiently to long fat pipes and rapidly scale up
the sending rate

« Operates in a manner that tends to exacerbate ‘buffer bloat’
conditions

And there’s a whole lot more...

TCP Variant Feedback

RENO | Loss AIMD
Vegas | Delay
High Speed | Loss
TCP
BIC | Loss Binary Increase
CUBIC | Loss Cubic function increase - Linux-Adopted
Agile-TCP | Loss High Speed - Low Delay
H-TCP | Loss High Speed
Fast | Delay Akamai Propriatary
Compound | Loss/Delay Microsoft Adopted
TCP
Westwood | Loss Dynamic setting of Slow Start Threshold
Elastic TCP | Loss/Delay High Speed - High Delay

TCP and Buffers — the Theory

When a sender receives a loss signal it repairs the loss and
halves it's sending window

This will cause the sender to pause for the amount of time to
drain half the outstanding data in the network (1xRTT interval)

|deally, this exactly matches the amount of time taken for the
gueue to drain

At the time the queue is drained the sender resumes its sending
(at half the rate) and the buffer has fully drained

For this to work efficiently, the queue size for a link should equal
the delay bandwidth product of the link it drives

TCP and Buffers

Buffer Too Big: The queue never drains, so part of the buffer
just adds delay to the connection

Sending Rate / Sender Window

-

Packet Loss

Congestion
Avoidance

/|

Queue too big

Added delay, or
“buffer bloat”

Congestion
Avoidance
WI/\V Link Capacity

e Sender s Window recovery interv
/ Standing Queue
v —

Time

TCP and Buffers

Buffer Too Small: The queue drains, and the sender
operates below bottleneck speed — so the link is under-used

Queue too small

Packet Loss

=

Idle
capacity

IV

Avoidance Xl %
4

Link Capacity

Congestion
Avoidance

Congestion

Sender’s window recovery interval
(1XRTT)

Sending Rate / Sender Window

I

Time Link Idle

TCP and Buffer Size

The “general” rule of thumb for configuring the buffer size in a
router is:

Size = (BW - RTT)

Using the bandwidth and the roundtrip delay of the link being
driven

TCP and Buffer Size

The “general” rule of thumb for configuring the buffer size in a
router is:

. flow
a S\“g\e
e ingle aueve and
10N of as
ump".\o

driven

From 1 to N — Scaling Switching

 This finding of buffer size relates to a single flow through a
single bottleneck resource

« What happens to buffers with more simultaneous flows and
faster transmission systems?

Flow Mixing

* If 2 flows use a single buffer and they resonate precisely
then the buffer still needs to be delay-bandwidth size

* If they are precisely out of phase the common buffer
requirement is reduced by 25%

N\ f
yVavd A

- =

Smaller Buffers?

« What about the case of N de-synchronised flows?
Size = (BW: - RTT) /N

Assuming that the component flows manage to achieve a fair outcome
of obtaining 1/N of the resource in a non-synchronised manner, then the
peak buffer resource is inversely proportionate to the square root of N

(“Sizing Router Buffers”, Appenzeller, McKeown, Keslassy, SIGCOM'04)

The Role of Buffers

 Buffers in a network serve two essential roles:

— smooth sender burstiness

— Multiplexing N inputs to 1 output

Sender Pacing (Fair Queuing)

* Distribute cwnd data across the entire RTT interval

 Removes burst adaptation pressure on network buffers

net.core.default gdisc=fq

Tiny Buffers?

« If all senders ‘paced’ their sending to avoid bursting, and
were sensitive to the formation of standing queues then we
would likely have a residual multiplexing requirement for

buffers where:
B >= O(log W)

where W is the average flow window size

Why is this important?

* Because memory speed is not scaling at the same rate as
transmission or switching

* Further capacity and speed improvements in the network
mandate reduced memory demands within the switch

Qo cessoe

Switching Chip Design TradeOffs

« On-Chip memory is faster, but limited to between ~16M to ~64M

A chip design can include an interface to external memory banks
but the memory interface/controller also takes up chip space and
the external memory is slower

« Between 20% to 60% of switch chip real estate is devoted to
memory / memory control

« Small memory buffers in switch design allows for larger switch
fabric implementations on the chip

Optimising Flow State

* There are three ‘states’ of flow management:

— %Jnder-UtiIised — where the flow rate is below the link capacity and no queues
orm

— ?ver-UtiIised — where the flow rate is greater that the link capacity and queues
orm

— Saturated — where the queue is filled and packet loss occurs

« Loss-based control systems probe upward to the Saturated point, and back off
uickly to what they guess is the Under-Utilised state in order to the let the queues
rain

« But the optimal operational point for any flow is at the point of state change from
Under to Over-utilised, not at the Saturated point

RTT and Delivery Rate with Queuing

N
o . M
®)
= &
2
=
-g RTTbase / \ 777
3 _;i
o L
LC.;o';a-B ased
Data Volume In-Flight ongestion
& Control Pont
g /
I /| > Bw &~
<
E é‘,’b" & Packet Loss
2 \Q-
o N .
()] 4 O?“\W’\U\N\
\OQQ’ Oteratng Poind
S

Under-Utilised Over-Utilised Saturated

How to detect the onset of queuing?

* By getting the network’s routers to report when queues

are forming!

Ll
'\erlu-| o | ool Aeeen | Tolw Lengih I
Ksrtiicaton nlul soreant Ot I
Tina To Liss o Hiamder Chackm I
Emon Ak I
Uieslewd e Gk I
o~ o
o 1 2
| | |
| Precedence

ECN Bits

0 0 — Non-ECN Capable Transport
01 - ECN Capable Transport
10 - ECN Capable Transport
1 1 — Congestion Experienced

| Source Part | Dastination Part
é Sequence Number
Acknowledgment Number

= W
offsat B £ A

Checksum Urgant Pointar

TCP Options Padding L

{ TCP Data

ECE - receiver back to sender — CE received
CWR - sender to receiver — Congestion Window Reduced

SYN+ECE+CWR — ECN capable on session start
SYN+ACK+ECE — ECN capable response

ECN Control Loop

Congested Queve Dade

ECN

S‘TM GGD &2 DDG @EEQE @@U@ ﬁ@@ IP £

Recewer

Sender

« A router “marks” IP packets at the onset of queue formation with a
bit signal

.]:Il'he Receiver echoes this bit up into the transport protocol reverse
ow

« The sender reduces its sending window size (and notifies the
receiver that it was performed this window reduction)

Explicit Congestion Notification

Congestea Queve Stade

L Dada o
D n oLl Ol gl s AP
< " Dsreiver

Sender {mﬁ ACKes <é UUD‘

Explicit Congestion Notification

» Sparse signal (single bit)
 Both hosts and routers need to be ECN aware

 |P level marking requires end host protocol surgery at both
ends:

« Receivers need to reflect ECN bits

« Senders need to pass IP CE up to the TCP session to
signal a need to reduce the sending rate

ECN Issues

* It would be good if everyone did it!

— That probably means every router and every end host
running TCP (and QUIC)

— How are we doing in deploying ECN?

ECN Issues

ECN Use in World (XA)

Zoom: (0] (a] [5d] (aw] (Am] (Zm] (6m] [Ty] (max] ®IPECTI0) @IPECT(1) @TCPECN
3
2.5
2
1.5
1
0.5
M%MWW‘W NP _\-—/‘
0
17 March2025 10 17 24 Apil2025 7 w2 May 2025 12 19 2 Jine202s o 6 23 duy2oes 7 w2

How to detect the onset of queuing?

. getting the 'S routers rt when queues
are forming!

OR

« By detecting the onset of queue-based delays in the
measured RTT

Flow Control Evolution

« Current flow control systems make small continual adjustments every
RTT interval and a massive adjustment at irregular intervals

— As the flow rate increases the CA adjustments of 1 segment per RTT
become too small

— Rate halving is a massive response

OR

« We could use a system that only made periodic adjustments every n
RTT intervals based on delay probing

— And set the adjustment to be proportionate to the current flow rate

BBR Design Principles

« Pace the sending packets to avoid the need for network buffer rate
adaptation

« Probe the path capacity only intermittently (every 8" RTT)

* Probe the path capacity by increasing the sending rate by 25% for an
RTT interval and then drop the rate to drain the queue: —

— If the RTT of the probe interval equals the RTT of the previous
state, then there is available path bandwidth that could be utilised

— If the RTT of the probe rises, then the path is likely to be at the
onset of queuing and no further path bandwidth is available

* Do not alter the path bandwidth estimate in response to packet loss!

Idealised BBR profile

180000 . ; ; ;

160000 -

140000 (-

120000

100000 (-

80000 (-

60000 -

40000 -

20000

0

BBR s
BBR Queue Size

sending rate

network queues

BBR Politeness?

 BBR will probably not constantly
pull back when simultaneous
loss-based protocols exert
pressure on the path’s queues

« BBR tries to make minimal

demands on the queue size, and

does not rely on a large dynamic
range of queue occupancy
during a flow

E
:
g
g

- @ I 2 @
T T T T T T T T

0

I
BBR
L

Start CUBIC

Start BBR

40 50 60

Time (secs)

Stop CUBIC

Our Environment...

It's a pretty comprehensive mess:

— A diverse mix of e-2-e TCP control protocols
CUBIC, NewRENO, LEDBAT, Fast, BBR, Compound

— A mix of traffic models
Buffer-filling streamers, flash bursts, bulk data

— A mix of active queue management disciplines
RED, WRED, CODEL, FQ, none

— A mix of media
Wire line, mobile, WiFi

— A mix of buffer size deployments

— Sporadic ECN marking

Protocol Darwinism?

What “wins” in this diverse environment?

— Efficiency is perhaps more critical than fairness
as a “survival fitness” strategy

— | suspect that protocols that make minimal
assumptions about the network will be more robust
than those that require certain network
characteristics to operate efficiently

— Protocols that operate with regular feedback
mechanisms appear to be more robust than
irregular “shock” treatment protocols

What is all this telling us?

* We actually don’t know all that much about fine-grained
behaviour of large-scale high capacity switching systems.

« Some of our cherished assumptions about network design may
be mistaken

* Moving large data sets over very high-speed networks requires
an entirely different approach to what we are doing today

The Internet still contains a large set of important unsolved
problems!

That’s it!

	Slide 1: The Evolution of TCP Transport Protocols
	Slide 2: November 1859
	Slide 3: The Evolution of Speed
	Slide 4: The Evolution of Speed
	Slide 5: Today
	Slide 6: TCP is the Internet
	Slide 7: TCP Performance Objectives
	Slide 8: It’s a Flow Control process
	Slide 9: TCP Control
	Slide 10: TCP Control
	Slide 11: “Classic TCP” – TCP Reno
	Slide 12: The Classic TCP Picture
	Slide 13: Changing TCP’s control algorithm
	Slide 14: Carriage Service Challenges
	Slide 15: CUBIC
	Slide 16: CUBIC and Queue formation
	Slide 17: CUBIC assessment
	Slide 18: And there’s a whole lot more…
	Slide 19: TCP and Buffers – the Theory
	Slide 20: TCP and Buffers
	Slide 21: TCP and Buffers
	Slide 22: TCP and Buffer Size
	Slide 23: TCP and Buffer Size
	Slide 24: From 1 to N – Scaling Switching
	Slide 25: Flow Mixing
	Slide 26: Smaller Buffers?
	Slide 27: The Role of Buffers
	Slide 28: Sender Pacing (Fair Queuing)
	Slide 29: Tiny Buffers?
	Slide 30: Why is this important?
	Slide 31: Switching Chip Design TradeOffs
	Slide 32: Optimising Flow State
	Slide 33: RTT and Delivery Rate with Queuing
	Slide 34: How to detect the onset of queuing?
	Slide 35: ECN Control Loop
	Slide 36: Explicit Congestion Notification
	Slide 37: Explicit Congestion Notification
	Slide 38: ECN Issues
	Slide 39: ECN Issues
	Slide 40: How to detect the onset of queuing?
	Slide 41: Flow Control Evolution
	Slide 42: BBR Design Principles
	Slide 43: Idealised BBR profile
	Slide 44: BBR Politeness?
	Slide 45: Our Environment…
	Slide 46: Protocol Darwinism?
	Slide 47: What is all this telling us?
	Slide 48: That’s it!

