
The Evolution of TCP Transport
Protocols

Geoff Huston AM

APNIC Labs

November 1859

Charles Darwin published a monumental work

that described a theory of the origins of the

diversity of life through a process of natural

selection, a finding initially jointly authored in a

paper by Alfred Wallace and Charles Darwin

It described a natural process that is

commonly corrupted as “survival of the fittest”

It’s not just the living world where we observe

these evolutionary pressures

The Evolution of Speed

1980’s

– TCP rates of Kilobits per second

1990’s

– TCP rates of Megabits per second

2000’s

– TCP rates of Gigabits per second

2010’s

– TCP rates of tens of Gigabits per second

2020’s

– TCP rates of tens of Gigabits per second

3

80’s 90’s 00’s 10’s

K

M

G

20’s

The Evolution of Speed

1980’s

– TCP rates of Kilobits per second

1990’s

– TCP rates of Megabits per second

2000’s

– TCP rates of Gigabits per second

2010’s

– TCP rates of tens of Gigabits per second

2020’s

– TCP rates of tens of Gigabits per second

4

80’s 90’s 00’s 10’s

K

M

G

20’s?

Today
• Optical transmission speeds

are now edging into multi-

Terabit capacity

• But peak TCP session

speeds across the network

are not keeping up

• Why not?
5

optical transport

TCP speed

80’s 90’s 00’s 10’s

K

M

G

20’s

T

TCP is the Internet

• The Transmission Control Protocol is an end-to-end
protocol that creates a reliable stream protocol from the
underlying IP datagram device

• This single protocol is the “beating heart” at the core of
the Internet

• TCP operates as an adaptive rate control protocol that
attempts to operate efficiently and fairly

TCP Performance Objectives

To maintain an average flow which is both Efficient and Fair

Efficient:

– Minimise packet loss

– Minimise packet re-ordering

– Do not leave unused path bandwidth on the table!

Fair:

– Do not crowd out other TCP sessions

– Over time, take an average 1/N of the path capacity when there are
N other TCP sessions sharing the same path

It’s a Flow Control process

• Think of this as a multi-
flow fluid dynamics
problem

• Each flow has to gently
exert pressure on the
other flows to signal
them to provide a fair
share of the network,
and be responsive to
the pressure from all
other flows

TCP Control

Data sending rate is matched to the ACK arrival
rate

TCP is an ACK Pacing protocol

If the sender sends one packet each time it receives an ACK, then the sender will
maintain a steady number of packets in flight within the network

TCP Control

• Ideally TCP would send packets at a fair share of available
network capacity. But the TCP sender has no idea what
“available network capacity” means.

• So, TCP uses ‘rate adaptation’ to probe into network,
increasing the sending rate until it receives a signal that the
sending rate is ‘too fast’

• We’ve been experimenting with various forms of TCP rate
adaptation for decades!

“Classic TCP” – TCP Reno

• Additive Increase Multiplicative Decrease (AIMD)

– While there is no packet loss, increase the sending rate by one
segment (MSS) each RTT interval

– If there is packet loss (detected by duplicate ACKs) pause for 1xRTT
and decrease the sending rate by 50% over the next RTT Interval by
halving the sender’s send window

• Start Up

– Each RTT interval, double the sending rate

– We call this “slow start” – probably because its anything but slow!!!

The Classic TCP Picture

Queue formation

Queue drain

Changing TCP’s control algorithm

• The TCP packet format is invariant

• But the control algorithm can vary

• What defines a “fitter” control algorithm?

– Be no less ‘aggressive’ than everyone else

– Try to exploit opportunities that others do not

– But don’t destroy the environment (network)

Carriage Service Challenges

• Radio system with non-congestion loss behaviours

• LEO satellite services with very high jitter elements

• Very high bandwidth services pose a challenge to linear

rate increase

• How to take advantage of equal-cost multi path frameworks

• Session “pulsing” used by streaming services

CUBIC

• CUBIC is designed to be useful for high-speed sessions while still
being ‘fair’ to other sessions and also be efficient even at lower speeds

• Rather than probe in a linear manner for the sending rate that triggers
packet loss, CUBIC uses a non-linear (cubic) search algorithm

CUBIC and Queue formation

Total Queue Capacity

(Onset of Packet Loss)

Link Capacity Capacity

(Onset of Queuing)

Network Buffers Fill

Network Buffers Drain

CUBIC assessment

• Can react quickly to available capacity in the network

• Tends to sit for extended periods in the phase of queue

formation

• Can react efficiently to long fat pipes and rapidly scale up

the sending rate

• Operates in a manner that tends to exacerbate ‘buffer bloat’

conditions

And there’s a whole lot more…

TCP and Buffers – the Theory

• When a sender receives a loss signal it repairs the loss and
halves it’s sending window

• This will cause the sender to pause for the amount of time to
drain half the outstanding data in the network (1xRTT interval)

• Ideally, this exactly matches the amount of time taken for the
queue to drain

• At the time the queue is drained the sender resumes its sending
(at half the rate) and the buffer has fully drained

• For this to work efficiently, the queue size for a link should equal
the delay bandwidth product of the link it drives

TCP and Buffers

Buffer Too Big: The queue never drains, so part of the buffer

just adds delay to the connection

Sender’s window recovery interval
(1xRTT)

Congestion
AvoidanceCongestion

Avoidance

Time

Se
n

d
in

g
 R

a
te

 /
 S

e
n

d
e

r
W

in
d

o
w

Packet Loss

Queue too big

Link Capacity

Added delay, or
“buffer bloat”

Standing Queue

TCP and Buffers

Buffer Too Small: The queue drains, and the sender

operates below bottleneck speed – so the link is under-used

Sender’s window recovery interval
(1xRTT)

Congestion
AvoidanceCongestion

Avoidance

Time

Se
n

d
in

g
 R

a
te

 /
 S

e
n

d
e

r
W

in
d

o
w

Packet Loss

Queue too small

Link Capacity

Idle
capacity

Link Idle

TCP and Buffer Size

The “general” rule of thumb for configuring the buffer size in a

router is:

Size = (BW ∙ RTT)

Using the bandwidth and the roundtrip delay of the link being

driven

22

TCP and Buffer Size

The “general” rule of thumb for configuring the buffer size in a

router is:

Size = (BW ∙ RTT)

Using the bandwidth and the roundtrip delay of the link being

driven

23

From 1 to N – Scaling Switching

24

• This finding of buffer size relates to a single flow through a

single bottleneck resource

• What happens to buffers with more simultaneous flows and

faster transmission systems?

Flow Mixing

• If 2 flows use a single buffer and they resonate precisely

then the buffer still needs to be delay-bandwidth size

• If they are precisely out of phase the common buffer

requirement is reduced by 25%

25

Smaller Buffers?

• What about the case of N de-synchronised flows?

Size = (BW ∙ RTT) / √N

Assuming that the component flows manage to achieve a fair outcome

of obtaining 1/N of the resource in a non-synchronised manner, then the

peak buffer resource is inversely proportionate to the square root of N

26
(“Sizing Router Buffers”, Appenzeller, McKeown, Keslassy, SIGCOM’04)

The Role of Buffers

• Buffers in a network serve two essential roles:

– smooth sender burstiness

– Multiplexing N inputs to 1 output

Sender Pacing (Fair Queuing)

• Distribute cwnd data across the entire RTT interval

• Removes burst adaptation pressure on network buffers

net.core.default_qdisc=fq

Tiny Buffers?

• If all senders ‘paced’ their sending to avoid bursting, and

were sensitive to the formation of standing queues then we

would likely have a residual multiplexing requirement for

buffers where:

B >= O(log W)

where W is the average flow window size

29

Why is this important?

• Because memory speed is not scaling at the same rate as

transmission or switching

• Further capacity and speed improvements in the network

mandate reduced memory demands within the switch

Switching Chip Design TradeOffs

• On-Chip memory is faster, but limited to between ~16M to ~64M

• A chip design can include an interface to external memory banks
but the memory interface/controller also takes up chip space and
the external memory is slower

• Between 20% to 60% of switch chip real estate is devoted to
memory / memory control

• Small memory buffers in switch design allows for larger switch
fabric implementations on the chip

31

Optimising Flow State

• There are three ‘states’ of flow management:

– Under-Utilised – where the flow rate is below the link capacity and no queues
form

– Over-Utilised – where the flow rate is greater that the link capacity and queues
form

– Saturated – where the queue is filled and packet loss occurs

• Loss-based control systems probe upward to the Saturated point, and back off
quickly to what they guess is the Under-Utilised state in order to the let the queues
drain

• But the optimal operational point for any flow is at the point of state change from
Under to Over-utilised, not at the Saturated point

Under-Utilised Over-Utilised Saturated

RTT and Delivery Rate with Queuing

How to detect the onset of queuing?

• By getting the network’s routers to report when queues

are forming!

IP

TCP

ECN Control Loop

• A router “marks” IP packets at the onset of queue formation with a
bit signal

• The Receiver echoes this bit up into the transport protocol reverse
flow

• The sender reduces its sending window size (and notifies the
receiver that it was performed this window reduction)

IP

TCP

Explicit Congestion Notification

Explicit Congestion Notification

• Sparse signal (single bit)

• Both hosts and routers need to be ECN aware

• IP level marking requires end host protocol surgery at both

ends:

• Receivers need to reflect ECN bits

• Senders need to pass IP CE up to the TCP session to

signal a need to reduce the sending rate

ECN Issues

• It would be good if everyone did it!

– That probably means every router and every end host

running TCP (and QUIC)

– How are we doing in deploying ECN?

ECN Issues

How to detect the onset of queuing?

• By getting the network’s routers to report when queues

are forming!

OR

• By detecting the onset of queue-based delays in the

measured RTT

Flow Control Evolution

• Current flow control systems make small continual adjustments every
RTT interval and a massive adjustment at irregular intervals

– As the flow rate increases the CA adjustments of 1 segment per RTT
become too small

– Rate halving is a massive response

OR

• We could use a system that only made periodic adjustments every n
RTT intervals based on delay probing

– And set the adjustment to be proportionate to the current flow rate

41

BBR Design Principles

• Pace the sending packets to avoid the need for network buffer rate
adaptation

• Probe the path capacity only intermittently (every 8th RTT)

• Probe the path capacity by increasing the sending rate by 25% for an
RTT interval and then drop the rate to drain the queue:

– If the RTT of the probe interval equals the RTT of the previous
state, then there is available path bandwidth that could be utilised

– If the RTT of the probe rises, then the path is likely to be at the
onset of queuing and no further path bandwidth is available

• Do not alter the path bandwidth estimate in response to packet loss!

Idealised BBR profile

sending rate

network queues

BBR Politeness?

• BBR will probably not constantly
pull back when simultaneous
loss-based protocols exert
pressure on the path’s queues

• BBR tries to make minimal
demands on the queue size, and
does not rely on a large dynamic
range of queue occupancy
during a flow

Our Environment…

It’s a pretty comprehensive mess:

– A diverse mix of e-2-e TCP control protocols

CUBIC, NewRENO, LEDBAT, Fast, BBR, Compound

– A mix of traffic models

Buffer-filling streamers, flash bursts, bulk data

– A mix of active queue management disciplines

RED, WRED, CODEL, FQ, none

– A mix of media

Wire line, mobile, WiFi

– A mix of buffer size deployments

– Sporadic ECN marking

Protocol Darwinism?

What “wins” in this diverse environment?

– Efficiency is perhaps more critical than fairness
as a “survival fitness” strategy

– I suspect that protocols that make minimal
assumptions about the network will be more robust
than those that require certain network
characteristics to operate efficiently

– Protocols that operate with regular feedback
mechanisms appear to be more robust than
irregular “shock” treatment protocols

What is all this telling us?

• We actually don’t know all that much about fine-grained
behaviour of large-scale high capacity switching systems.

• Some of our cherished assumptions about network design may
be mistaken

• Moving large data sets over very high-speed networks requires
an entirely different approach to what we are doing today

The Internet still contains a large set of important unsolved
problems!

47

That’s it!

	Slide 1: The Evolution of TCP Transport Protocols
	Slide 2: November 1859
	Slide 3: The Evolution of Speed
	Slide 4: The Evolution of Speed
	Slide 5: Today
	Slide 6: TCP is the Internet
	Slide 7: TCP Performance Objectives
	Slide 8: It’s a Flow Control process
	Slide 9: TCP Control
	Slide 10: TCP Control
	Slide 11: “Classic TCP” – TCP Reno
	Slide 12: The Classic TCP Picture
	Slide 13: Changing TCP’s control algorithm
	Slide 14: Carriage Service Challenges
	Slide 15: CUBIC
	Slide 16: CUBIC and Queue formation
	Slide 17: CUBIC assessment
	Slide 18: And there’s a whole lot more…
	Slide 19: TCP and Buffers – the Theory
	Slide 20: TCP and Buffers
	Slide 21: TCP and Buffers
	Slide 22: TCP and Buffer Size
	Slide 23: TCP and Buffer Size
	Slide 24: From 1 to N – Scaling Switching
	Slide 25: Flow Mixing
	Slide 26: Smaller Buffers?
	Slide 27: The Role of Buffers
	Slide 28: Sender Pacing (Fair Queuing)
	Slide 29: Tiny Buffers?
	Slide 30: Why is this important?
	Slide 31: Switching Chip Design TradeOffs
	Slide 32: Optimising Flow State
	Slide 33: RTT and Delivery Rate with Queuing
	Slide 34: How to detect the onset of queuing?
	Slide 35: ECN Control Loop
	Slide 36: Explicit Congestion Notification
	Slide 37: Explicit Congestion Notification
	Slide 38: ECN Issues
	Slide 39: ECN Issues
	Slide 40: How to detect the onset of queuing?
	Slide 41: Flow Control Evolution
	Slide 42: BBR Design Principles
	Slide 43: Idealised BBR profile
	Slide 44: BBR Politeness?
	Slide 45: Our Environment…
	Slide 46: Protocol Darwinism?
	Slide 47: What is all this telling us?
	Slide 48: That’s it!

