How the Evolving DDoS Attack Landscape Has Re-invented Our Defence Architecture

Global Secure Layer

Who We Are

- Global Secure Layer (GSL) is a leading IP transit, colocation, DDoS protection, and ethernet service provider headquartered in Australia with a global presence
- Expansive subsea and terrestrial fibre network with metro dark fibre between sites
- Over 3,500 IPv4 peers in 50 sites
- 30+Tbps of border capacity, 6+Tbps of active scrubbing capacity
- Patent-pending DDoS mitigation solution, Goliath, was built on the principle of detecting complex, multi-vector DDoS attacks with high accuracy
- Leveraging our global anycast network to intelligently share state across all sites

What We Will Be Discussing

DDoS attack landscape

- Attack trends in throughput as well as the Internet ecosystem as a whole
- Historical attack volumes and how they influence capacity planning
- Challenges for effectively mitigating attack traffic

Journey of building our own appliances

- Why we did it, and what challenges it solved
- Design problems we faced early on, and tradeoffs we needed to consider
- Technical challenges of processing high packet rate at scale

- Attack sizes remain exponential while port sizes do not
 - Often on the defenders side, the port capacities are fixed
 - This may result from a mix of contracts, capacity planning issues, or misjudging capacity for at-risk ingress sites
 - This is especially critical when operating anycast
- Attack sizes follow Moore's Law
 - As transistor counts double every ~2 years, attack sizes tend to follow suit
 - We also see this pattern in port sizes
 - As residential broadband upload speeds increase, attack sizes will also
 - 0 10Gbps is the new 1Gbps, ~95% of attacks fall below 10gbps

Time

Example scrubbing distribution

DDoS Attacks at the Network Border (Anycast)

DDoS Mitigation Challenge #2 Changing Attack Methodology

- Moving from volumetric to application layer
- Stateful / in-session TCP attacks, aiming to mimic legitimate traffic
- Combining L7 methods with highly volumetric execution. Example: 398 million requests per second "rapid reset" HTTP/2 botnet
- Inter-customer attacks

Attacks Methods What We Need To Account For

Reflective	Volumetric	Protocol
 DNS NTP SSDP Memcached 	 Generic UDP DNS (nameserver attacks) TCP SYN TCP ACK TCP STOMP (stateful) GRE IP GRE Ethernet 	 RakNet HTTP VSE (Valve Source Engine) FiveM TeamSpeak OpenVPN
Reflective attacks have become larger over the last year, peaking at 1.2Tbps for DNS and 600Gbps for NTP	Modern operating systems do not handle SYN floods efficiently, oftentimes dying at 50kpps Unlike reflective, involves thousands of	Targets the underlying hosted application, or targets a particular weakness in the underlying transport protocol Typically needs a stateful component or layer
Common reflection sources include unsecured DNS resolvers, and NTP servers supporting Monlist query type	compromised hosts sending large volumes of traffic to the victim in hopes of saturating port speeds, packet processing capacity, or both.	7 inspecting application to perform validity checks on new incoming clients HTTPS effectively impossible to mitigate without decrypting in-flight traffic
Memcached was primarily cloud providers, which involves sending spoofed requests to a vulnerable server producing a response up to 5000x in size	TCP ACK difficult to mitigate without the mitigation device knowing the full state of the connection (state table helps)	

Carpet Bomb Attacks

Carpet Bomb attacks aim to flood traffic to all IPs within a subnet on a victim network, with the goal to bypass per destination attack detection.

DDoS Mitigation Challenge #3 False Positives

- How do we avoid impacting legitimate traffic flows when we don't always know the target application?
- How can we share intelligence of attacks across all sites with low latency?
- As attack complexity grows, the need to have comprehensive protocol-level validation becomes key

Why An In-House Appliance

- Existing DDoS appliance vendors on the market are built to be on-premise, single location, with no anycast deployment
- Often built as one size fits all, does not consider:
 - Asymmetric traffic scenarios
 - Multiple ingress points or sites
 - Multiple ingress transit providers and peering ports
- This pigeon-holes the solution into a limited operation mode that implies all traffic terminates at one central site, rather than a distributed deployment model
- Greater control and reaction time to new threats → iteration speeds often within hours.

Heuristics Engine

Inline traffic sampling

• To build a comprehensive mitigation system, we need one that automatically samples end-user traffic and detects anomalies quickly.

Time-series anomaly detection

- On anomaly detection for a sampled subnet, a mitigation rule is created
- This rule is inserted locally onto the device for the attacked prefix

Uniform scrubbing experience (LOBE)

• Rules produced are broadcasted to all mitigation devices on the network which ensures a uniform scrubbing experience across the whole network

PubSub

server

X

Putting The Power In Users Hands

Reasoning and Challenges

- We realised it was not enough to build a solution that protects our network. To provide a complete solution, it needed to protect the end user as well.
- How might end users expect to be able to use a solution?
 - Last mile user defined firewall rules
 - Edge device to remove volumetric traffic
 - Protocol specific filtering

Design Considerations (Creatia)

- We need to consider what end users need to be able to configure
 - Granular control without an overwhelming amount of features
- Convenient self-service onboarding processes can be a key differentiator for any given platform, particular in industries where self-service onboarding is largely unserved
- Giving end users access to granularity can empower them during attacks that may otherwise cause stress and impact bottom-line

August 25th 2024 Largest Packet Rate DDoS Attack Reported to the Public

- Targeted towards a Minecraft gaming end-user with peak packet rate reaching 3.15 Gpps (billion packets per second)
- When contrasted with historically reported records, this size outpaces these headlines at a factor of 3.2 3.5x.

• Top sources include Russia, Vietnam, and Korea

August 25th 2024 Largest Packet Rate DDoS Attack Reported to the Public

Top attack countries

Top source ASNs

Thank you