

## Demystifying FIPS 140-2: Terminology, Implementation Challenges, and Lessons Learned

**Khosrow Ramezani** 

### Agenda

A DIGIF COMPANY

- FIPS overview
- Motivation to adopt FIPS
- FIPS terminology
- Validation process
- Compliance process
- Lessons learned and Implementation notes



### **FIPS Overview**

- U.S. Federal Information Processing Standards.
- Collection of standards for information security.
- Mandated for federal agencies like NSA, CSI, NIST.
- Often adopted by U.S. states and non-governmental agencies.
- Embraced by other countries and Common Criteria.
- Focuses on cryptographic security for sensitive data.
- Applies to computer, telecom, and voice systems.
- Mandatory for designing modules in federal departments.
- Bars use of unvalidated cryptography in federal systems







### **FIPS 140 Overview**



| FIPS 140-2                              | FIPS 140-3              |
|-----------------------------------------|-------------------------|
|                                         |                         |
| Published in 2001                       | Supersedes FIPS 140-2   |
| Change notes were incorporated in 2002  | Published in March 2019 |
| Recently, FIPS 140-2 underwent a review | ISO/IEC 19790:2012      |
| Sunset in 2026                          | ISO/IEC 24759:2014      |



### **Motivation to adopt FIPS**



### **FIPS functional areas**





**Cryptographic Module Specification** Specification of cryptographic module, cryptographic boundary, Approved algorithms, and Approved modes of operation.

2

**Cryptographic Module Ports and Interfaces** Required and optional interfaces ,logically or physically separation of ports



Roles, Services, and Authentication Logical separation of roles, Role-based or identity-based, Identity-based authentication



**Finite State Model** Specification of finite state model and diagrams



#### **Physical Security**

Production grade equipment, Locks or tamper evidence, Tamper detection and response for covers and doors. Tamper detection and response envelope. EFP or EFT.

### **FIPS functional areas**





#### **Operational Environment**

Single operator, PPs evaluated at EAL2 to EAL4



#### **Cryptographic Key Management**

Key management mechanisms: random number and key generation, key establishment, key distribution, key entry/output, key storage, and key zeroization



#### EMI/EMC

47 CFR FCC Part 15. Subpart B, Class A (Business use). Applicable FCC requirements (for radio)



#### Self-Tests

Power-up tests: cryptographic algorithm tests, software/firmware integrity tests, critical functions tests. Conditional tests



#### **Design Assurance**

Configuration management (CM). Secure installation and generation. Design and policy correspondence. Guidance documents



#### **Mitigation of Other Attacks**

Specification of mitigation of attacks for which no testable requirements are currently available

### **Validation Process**





https://csrc.nist.rip/groups/STM/cmvp/documents/fips140-2/140-2flow.pdf

### **Compliance vs Validation**





### **Compliance vs Validation**



- The dilemma with FIPS validation lies in the
  - complexity
  - cost
  - time
- Validation requires significant effort and resources which is challenging for smaller companies or open-source projects.
- As a result, some products may be technically compliant with FIPS 140-2 but have not undergone the official validation process, leading to potential trust and credibility issues.
- Ultimately, users and organizations need to consider the context and sensitivity of their applications when choosing between FIPS-compliant and FIPS-validated cryptographic modules.

### **FIPS level 1 Compliance process**









### **Lessons learned**







### **Certification and frameworks that rely on FIPS 140-2**

- Common Criteria (CC): International standard evaluating IT product security.
- Payment Card Industry Data Security Standard (PCI DSS): Protects credit card transactions; may require FIPS 140-2 for cryptographic modules.
- Health Insurance Portability and Accountability Act (HIPAA): Protects patient data; FIPS 140-2 for ePHI encryption.
- Defense Federal Acquisition Regulation Supplement (DFARS): Cybersecurity standards for DoD contractors; FIPS 140-2 for defense systems.
- National Institute of Standards and Technology (NIST) Guidelines: NIST references FIPS 140-2 for cryptographic module requirements.
- Federal Risk and Authorization Management Program (FedRAMP): Standardized cloud provider assessment; FIPS 140-2 for cryptographic services."



# **Thank You!**

Khosrow Ramezani PhD,CISSP,CCSP Khosrow.Ramezani@digi.com

www.opengear.com