No Packet Left Behind

AWS' journey to running its own hardware and software end-to-end across a global network

Lincoln Dale

Senior Principal Engineer AWS – AS16509

Agenda

AWS Global Infrastructure

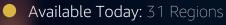
Our journey to reinventing our network infrastructure

our hardware, software and how we put systems together

Network architecture and software, tools and controllers

How we build and automate our network

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.


AWS REGIONS, EDGE LOCATIONS, AND THE GLOBAL BACKBONE

Ŕ

AWS REGIONS, EDGE LOCATIONS, AND THE GLOBAL BACKBONE

R E G I O N A L E X P A N S I O N

aws

Coming soon 5 Regions

AWS REGIONS, EDGE LOCATIONS, AND THE GLOBAL BACKBONE

LOCAL ZONES

- 4 recently launched
- 21 available today
- 30 coming soon

AWS REGIONS, EDGE LOCATIONS, AND THE GLOBAL BACKBONE

aws

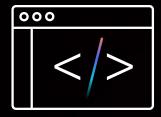
• 450+ CloudFront PoPs

115+ Direct Connect Locations

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS REGIONS, EDGE LOCATIONS, AND THE GLOBAL BACKBONE

AWS REGIONS, EDGE LOCATIONS, AND THE GLOBAL BACKBONE


AWS NETWORK BACKBONE

- Redundant 400 Gbps links
- 245+ Countries & Territories
- Between all Regions, Local Zones, and Edge Locations

Reinventing our network infrastructure



CUSTOM SOFTWARE

CUSTOM HARDWARE

- Simplicity Scales
- Focus on the benefits
- Freedom to examine trade-offs

TERABITS PER SECOND

DEVICE: 1 x Switch

HEIGHT: 1 x Rack Unit (RU)

PORTS: 32 x 400G

12.8

TERABITS PER SECOND

DEVICE: 1 x Switch

HEIGHT: 1 x Rack Unit (RU)

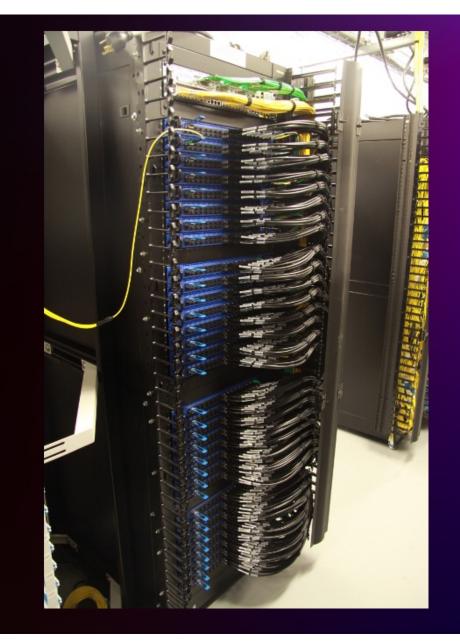
PORTS: 32 x 400G

100

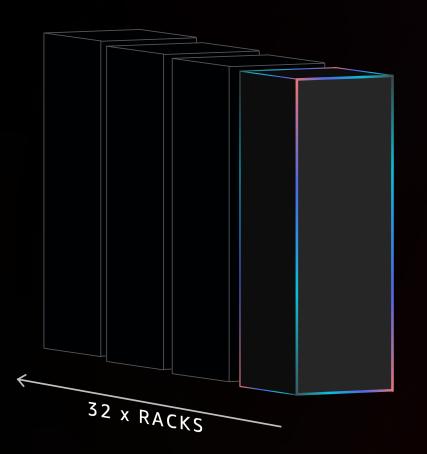
TERABITS PER SECOND

DEVICE: 1 rack (32 x switches)

HEIGHT: 42 x Rack Unit (RU)


PORTS: 32 x 32 x 400G

1000 TERABITS PER SECOND


DEVICE: 1 rack (32 x switches)

HEIGHT: 42 x Rack Unit (RU)

PORTS: 32 x 32 x 400G

DEVICE: 32 racks (32 x switches)
HEIGHT: 42 x Rack Unit (RU)
THROUGHPUT/RACK: 100 Tbps

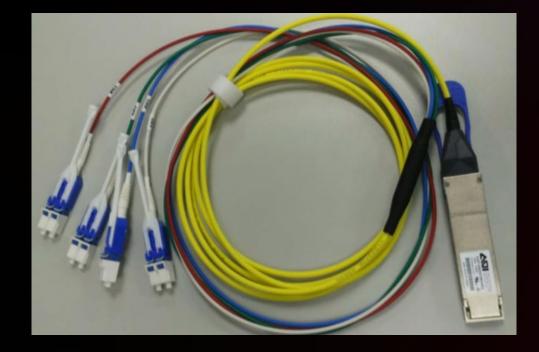
How we do it – In rack

Direct-attach copper (DAC) cabling

100G 6.7mm OD at 2.5m

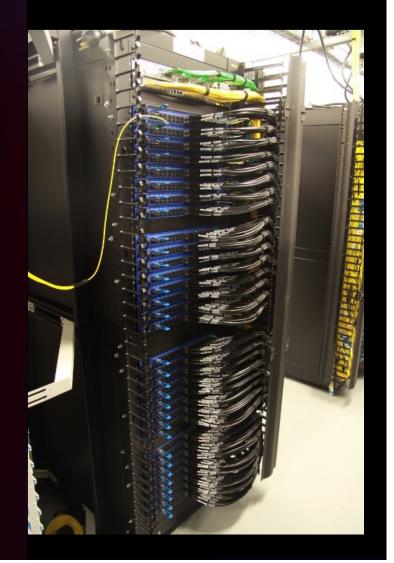
400G 11mm OD at 2.5m

Our Biggest enemy? Cable diameter.


Active DAC with retimers to reduce cable area

How we do it – Short reach

How we do it – SN connector


Metal boxes and a lot of cables

Small number of rack variations

Rack and cable switches for burn-in

Collect inventory and compare with bill of materials

Reprogram with AWS controlled binaries

Network Architecture and Software

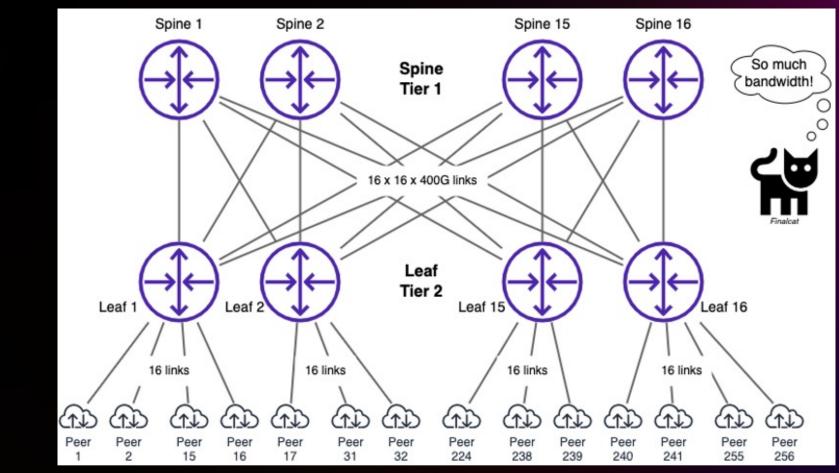
Automate everything

Config generation

Deployment coordination

Active telemetry

Auto-remediation


NOC-less

2 tier Clos

NON OVERSUBSCRIBED ANY PORT TO ANY PORT

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How we do it

MEDIUM HAUL

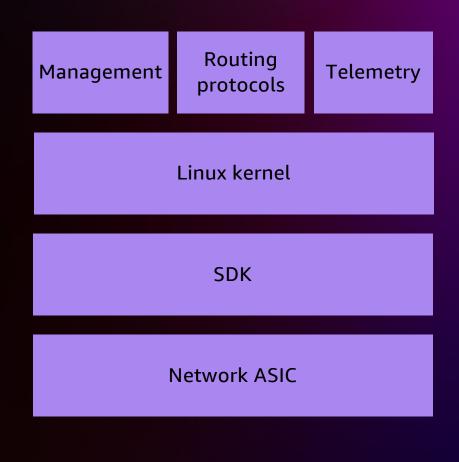
Data center interconnect (DCI)

OIF 400G ZR

400G – ZR+ to 400km, Bright ZR over 1000km

Integrated routing, DWDM, encryption

Create


NETWORK OPERATING SYSTEM

Linux-based

Multi-sourced manufacturing

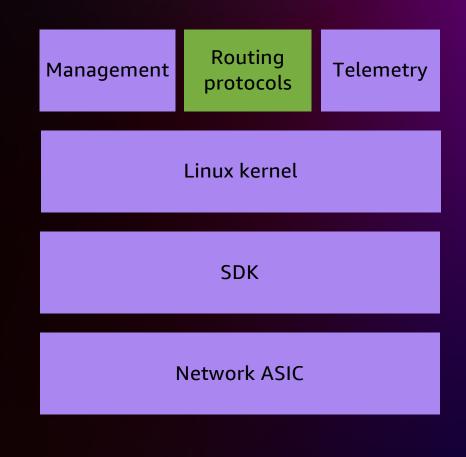
Multi-ASIC

aws

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Create

NETWORK OPERATING SYSTEM


Linux-based

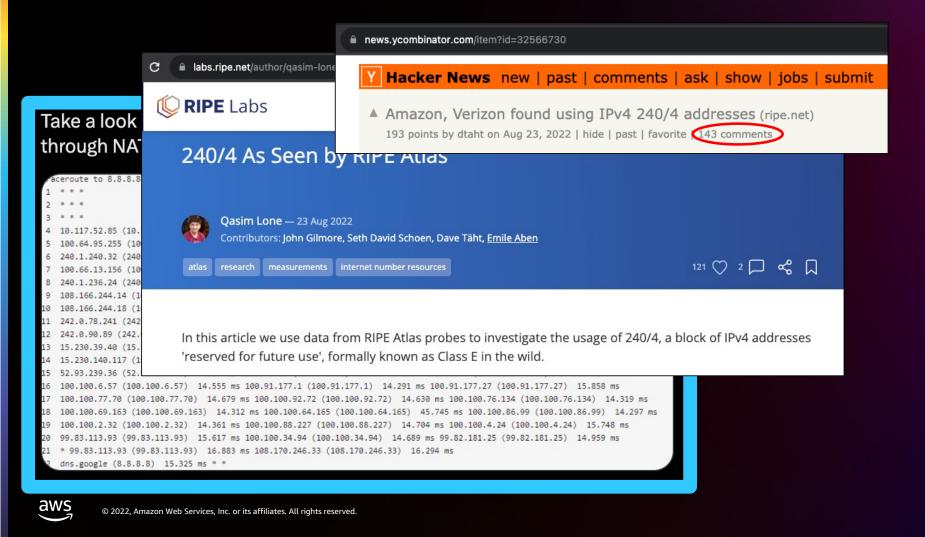
Multi-sourced manufacturing

Multi-ASIC

aws

OSPF/BGP ++

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.


Traceroute from outside AWS

% traceroute www.amazon.com

```
5
   * * *
    * * *
 6
   52.93.33.77 (52.93.33.77) 1.984 ms 1.789 ms 1.983 ms
 7
   52.93.33.130 (52.93.33.130) 2.316 ms 2.362 ms 2.891 ms
8
9
   150.222.72.105 (150.222.72.105) 3.682 ms 3.044 ms 3.002 ms
10
   * * *
11
    * * *
12
    * * *
13
   * * *
14
   * * *
15
   server-65-8-32-17.mel50.r.cloudfront.net (65.8.32.17) 3.650 ms 4.866 ms 3.033 ms
```


Traceroute from inside AWS

Traceroute from inside AWS (2)

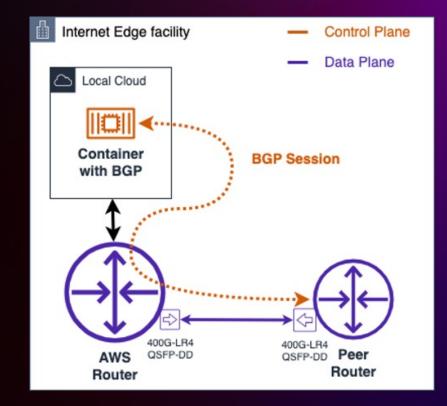
EC2 INSTANCE IN MELBOURNE TRACEROUTE TO ELASTIC IP OF EC2 INSTANCE IN SYDNEY

% traceroute -n -q1 3.24.0.0
traceroute to 3.24.0.0 (3.24.0.0), 30 hops max, 60 byte packets
1 244.5.0.1 1.647 ms

240.1.72.6 0.185 ms 2 3 240.1.192.13 10.690 ms 4 15.230.210.36 13.923 ms 5 15.230.210.45 19.009 ms 15.230.210.96 10.888 ms 6 15.230.211.4 11.825 ms 7 240.1.184.15 11.448 ms 8 9 240.1.184.30 11.345 ms 10 242.4.106.53 16.677 ms 11 3.24.0.0 11.696 ms မွ

Disaggregated control plane

COMBINATION OF ON-DEVICE AND OFF-DEVICE


On-device handles local things like LACP, ARP/ND and all aspects of physical connectivity

BGP speaker runs elsewhere

Faster convergence and higher scale than would otherwise be possible

Enables us to iterate/evolve each part separately

Peer doesn't see anything different, TTL1 or TTL255 BGP still works the same way

How you see us / how we see you

COMBINATION OF ON-DEVICE AND OFF-DEVICE

```
re0> ping 189.233.232.1 source 189.233.232.0 size 1472 do-not-fragment
PING 189.233.232.1 (189.233.232.1) from 189.233.232.0 : 1472(1500) bytes of data.
1480 bytes from 189.233.232.1: icmp_seq=1 ttl=255 time=0.901 ms
1480 bytes from 189.233.232.1: icmp_seq=1 ttl=254 time=0.919 ms (DUP!)
1480 bytes from 189.233.232.1: icmp_seq=2 ttl=255 time=0.555 ms
1480 bytes from 189.233.232.1: icmp_seq=2 ttl=254 time=0.614 ms (DUP!)
```

% ip -d link show bond1

aws

166: bond1: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue master TMS-VRF state UP mode DEFAULT group default qlen 1000

link/ether a0:d0:dc 94:52:42 brd ff:ff:ff:ff:ff:ff promiscuity 0 minmtu 68 maxmtu 65535 bond mode 802.3ad miimon 100 updelay 5000 downdelay 1100 peer_notify_delay 0 use_carrier 1 arp_interval 0 arp_validate none arp_all_targets any primary_reselect always fail_over_mac none xmit_hash_policy layer2 resend_igmp 1 num_grat_arp 1 all_slaves_active 1 min_links 1 lp_interval 1 packets_per_slave 1 lacp_rate fast ad_select count ad_aggregator 1 ad_num_ports 1 ad_actor_key 12345 ad_partner_key 12345 ad_partner_mac 94:ae:f0:c8:38:dd tlb_dynamic_lb 1 vrf_slave table 14 addrgenmode eui64 numtxqueues 16 numrxqueues 16 gso_max_size 65536 gso_max_seqs 65535

alias _EXTPEER-LAG _AUSSIE_BROADBAND #1 AS4764 PS_ID:96445 BGP:bne50-br-fnc-f1-b1-bgp-r2-c1

The curious case of flaky IPv6 NS

LINUX MCAST_RESOLICIT (NON-DEFAULT) REQUIRED FOR TO TRIGGER SRC+DST LINK-LOCAL IPV6 NS

src FE80 dst 2620 fails, src FE80 dst FF80 WORKS TL;DR: Many people get FE80 ACLs wrong

% ip -ts monitor neigh dev bond1

	2620:107:4008:xxx::2 dev bond1 lladdr d4:6a:35:35:4c:92 router PROBE	36 IPv6 NS sent,
[2023-01-13T02:58:15.649269]	fe80::d66a:35ff:fe25:4c92 dev bond1 lladdr d4:6a:35:35:4c:92 router PROBE	
[2023-01-13T02:58:15.650764]	fe80::d66a:35ff:fe25:4c92 dev bond1 lladdr d4:6a:35:35:4c:92 router REACHABLE	none answered
[2023-01-13T02:58:45.852977]	99.83.1xx.xx dev bond1 lladdr d4:6a:35:35:4c:92 PROBE	
[2023-01-13T02:58:45.854469]	99.83.1xx.xx dev bond1 lladdr d4:6a:35:35:4c:92 REACHABLE	
[2023-01-13T02:58:46.112645]	fe80::d66a:35ff:fe25:4c92 dev bond1 lladdr d4:6a:35:35:4c:92 router PROBE	LAS SOOD OF WE ODE
[2023-01-13T02:58:46.114825]	fe80::d66a:35ff:fe25:4c92 dev bond1 lladdr d4:6a:35:35:4c:92 router REACHABLE	As soon as we age
[2023-01-13T02:58:52.413809]	2620:107:4008:xxx::2 dev bond1 router FAILED	out the entry
[2023-01-13T02:59:07.779235]	2620:107:4008:xxx::2 dev bond1 lladdr d4:6a:35:35:4c:92 router REACHABLE	—it then answers
[2023-01-13T02:59:16.305279]	99.83.1xx.xx dev bond1 lladdr d4:6a:35:35:4c:92 PROBE	
[2023-01-13T02:59:16.306371]	99.83.1xx.xx dev bond1 lladdr d4:6a:35:35:4c:92 REACHABLE	
[2023-01-13T02:59:16.473164]	2620:107:4008:xxx::2 dev bond1 lladdr d4:6a:35:35:4c:92 router PROBE	rinse/repeat
[2023-01-13T02:59:16.570665]	fe80::d66a:35ff:fe25:4c92 dev bond1 lladdr d4:6a:35:35:4c:92 router PROBE	
[2023-01-13T02:59:16.574393]	fe80::d66a:35ff:fe25:4c92 dev bond1 lladdr d4:6a:35:35:4c:92 router REACHABLE	
[2023-01-13T02:59:46.767019]	99.83.1xx.xx dev bond1 lladdr d4:6a:35:35:4c:92 PROBE	
[2023-01-13T02:59:46.770263]	99.83.1xx.xx dev bond1 lladdr d4:6a:35:35:4c:92 REACHABLE	
[2023-01-13T02:59:47.025611]	fe80::d66a:35ff:fe25:4c92 dev bond1 lladdr d4:6a:35:35:4c:92 router PROBE	
[2023-01-13T02:59:47.026513]	fe80::d66a:35ff:fe25:4c92 dev bond1 lladdr d4:6a:35:35:4c:92 router REACHABLE	
[2023-01-13T02:59:53.341824]	2620:107:4008:xxx::2 dev bond1 router FAILED	
[2023-01-13T03:00:07.779211]	2620:107:4008:xxx::2 dev bond1 lladdr d4:6a:35:35:4c:92 router REACHABLE	

% tcpdump -i bond1 -n -p --direction=out 'icmp6'

04:15:57.597793 IP6 fe80::a2d0:dcff:fefc:8ed6 > **2620:107:4008:xxx::2:** ICMP6, neigh solicitation, who has 2620:107:4008:xxx::2 04:16:02.717802 IP6 fe80::a2d0:dcff:fefc:8ed6 > 2620:107:4008:xxx::2: ICMP6, neigh solicitation, who has 2620:107:4008:xxx::2 04:16:07.837808 IP6 fe80::a2d0:dcff:fefc:8ed6 > 2620:107:4008:xxx::2: ICMP6, neigh solicitation, who has 2620:107:4008:xxx::2 04:16:10.407026 IP6 fe80::a2d0:dcff:fefc:8ed6 > fe80::d66a:35ff:fe35:4c92: ICMP6, neighbor advertisement, tgt is fe80::a2d0:d 04:16:12.957792 IP6 fe80::a2d0:dcff:fefc:8ed6 > ff02::1:ff00:2: ICMP6, neighbor solicitation, who has 2620:107:4008:xxx::2

Cisco handling of link-local IPv6 nexthops

NEIGH SOLICITATION ON UNRESOLVED V6 NEXTHOP (VERSUS NOT USING THE ONE THAT DID RESOLVE!)

tcpdump on container terminating BGP, we see route announced to peer 21:20:10.427367 IP6 (flowlabel 0x7236d, hlim 1, next-header TCP (6) payload length: 286) 2620:107:XXXX:YYYY::1.41991 > 2620:107:XXXX:YYYY::2.179: Flags [P.], seg 1660:1926, ack 38, win 15745, length 266: BGP Update Message (2), length: 117 Origin (1), length: 1, Flags [T]: IGP 0x0000: 00 AS Path (2), length: 6, Flags [T]: 16509 0x0000: 0201 0000 407d ... because we provided a link-local nexthop Multi Exit Discriminator (4), length: 4, Flags [0]: 1000 0x0000: 0000 03e8 ... alongside a unicast nexthop Multi-Protocol Reach NLRI (14), length: 44, Flags [OE]: AFI: IPv6 (2). SAFI: Unicast (1) nexthop: 2620:107:XXXX:YYYY::) fe80::f040:4861 nh-length: 32, no SNPA 2605:a7c0:12a::/48 2605:a7c0:10a::/48 . . . # tcpdump on physical device terminating peering session

% topdump on physical device terminating peering session % sudo topdump -i bond13 -n -vve icmp6 topdump: listening on bond13, link-type EN10MB (Ethernet), capture size 262144 bytes 21:52:17.498480 94:ae:f0:c3:a0:d9 > 33:33:ff:40:48:61, ethertype IPv6 (0x86dd), length 86: (class 0xe0, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::96ae:f0ff:fec3:a0d9 > ff02::1:ff40:4861: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has fe80::f040:4861 source link-address option (1), length 8 (1): 94:ae:f0:c3:a0:d9

AWS REGIONS, EDGE LOCATIONS, AND THE GLOBAL BACKBONE

AWS NETWORK BACKBONE

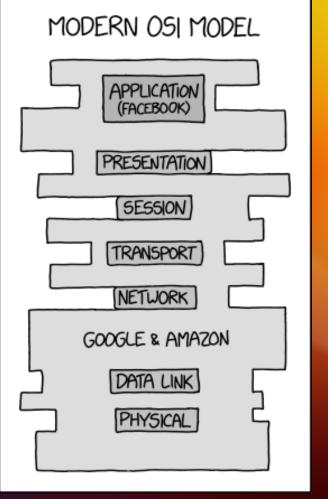
- Redundant 400 Gbps links
- 245+ Countries & Territories
- Between all Regions, Local Zones, and Edge Locations

http://ec2-reachability.amazonaws.com/

- Sydney ping/traceroute 3.24.0.0
- Melbourne ping/traceroute 16.50.164.255
- Perth ping/traceroute 96.0.1.218
- (see <u>http://ec2-reachability.amazonaws.com/</u> for other IPv4/v6 locations)
- curl https://blue.diagnostics.globalaccelerator.aws/api/stack
 {"ip":"13.248.102.33","stack":"MEL50-1"}
- Under 2msec (ideally <1msec) RTT wired ethernet CPE on NBN FTTP -> you -> us

https://interconnect.amazon/

SELF-SERVICE IX PEERING VIA PEERINGDB CREDENTIALS (FOR ALL ELSE PEERING-APAC@AMAZON.COM)


Peering	x X	Internet services				
Sessions Endpoints		Amaz Fast a interco	Sessions Endpoints CC g o cur	Peering > Sessions > Create session Step 1 Specify peering endpoints Step 2 Configure the sessions to create	Specify peering endpoints Info Peering sessions are established between Amazon endpoints and your network ports on a given facility. Steps to create a new peering session	0
		for ne Amazon Peering o Amazon in a secur		Step 3 Select contact details Step 4 Review and create	Peering endpoints (2/440) info C Select the Amazon peering endpoints you want to create a peering session with. C Q. Search 4 matches 1 Location = NL, Amsterdam, AMS-IX, Europe X Clear filters Location A Peering type V Amazon IP address V	
		Benefits Peering ma Create peering Internet Excha status in a few			Image: NL, Amsterdam, AMS-IX, Europe PUBLIC 80.249.210.100 Image: NL, Amsterdam, AMS-IX, Europe PUBLIC 2001:7f8:1::a501:6509:2 Image: NL, Amsterdam, AMS-IX, Europe PUBLIC 80.249.210.217 Image: NL, Amsterdam, AMS-IX, Europe PUBLIC 80.249.210.217 Image: NL, Amsterdam, AMS-IX, Europe PUBLIC 2001:7f8:1::a501:6509:1	
					Destination network Select what networks you want Amazon to create a peering relationship with. These networks are identified by the autonomous system number (ASN) and IP address of the router present in the exchange. ASN Select AS numbers from those in the list owned by your organization. Choose options 46489 Amazon NVS / Twitch	
WS	© 2022, Amazon Web S	ervices, Inc. or its affiliates. All ri	💬 Feedback		Amazon vs / Writen	

Thank You

Lincoln Dale

aws

Senior Principal Engineer AWS – AS16509

Source: https://xkcd.com/2105, Randall Munroe