
Hyron

@jacobneiltaylor

A Case Study in Automating Networks

Agenda

• Background: Why should we automate?

• Issues: What’s stopping us today?

• Design: How could we automate networks?

• Implementation: What is Hyron and how is it better?

• Demonstration: Show us you aren’t full of it!

Background
Why things aren’t fine…

Networking is very different to what it was
10 years ago

Why Automate?
What’s wrong with `conf t`?

• Humans suck: Humans make mistakes, deal with it.

• What was the cost of your first `conf t` booboo?

• Delegating BAU work to junior staff doesn’t scale

• Those damn clouds: Changes are increasing in two ways:

• Frequency

• Complexity

The Old World

The New World

Hasn’t This Been Done?
Can we copy our neighbours homework?

• Version Control as Change Control:

• Use Git PRs as change mechanism

• Store declarative configuration in Git repos

• Pipelines as Change Deployment:

• Elimination of fat fingers

• Focus less on process, more on delivery

What Solutions Exist?

Issues
Why can’t we “just automate it”?

Most automation tools are
misaligned with our requirements

Why Haven’t We Automated?
It’s a conspiracy by big ASIC!

• Vendors have Vested Interests:
• Vendors REALLY want you to use their automation solutions

• Their solutions funnily enough require buy-in to their ecosystem

• “Standards” like NETCONF are either ignored or subject to embrace-extend-extinguish

• Integrated Generation and Deployment:
• Often, automation tools only resolve final configuration at the point of change

• For network devices, we often want to know exact end-state prior to change

Why Haven’t We Automated cont.
I blame the lizard people…

• Network People with Dev Skills = 🦄:
• Finding the people with the skills to deploy and manage such systems is hard

• Keeping them is even harder…

• SysOps and Devs often have greater overlap so it’s less problematic

• Networking is a 2nd Class Citizen in Automation:
• Network support is often an afterthought, if implemented at all

• It’s just plain risky!
• If an automation system botches a host update, healthchecks will mark the node down

• If an automation system botches a network update, BGP will mark your AS down!

Design
Can we do better?

In any design exercise, we need to define
goals and constraints

Goals
What do we want network automation to be?

• Idempotent: The output should be the same when the input is the same

• Descriptive: The configuration intent should be clear from the source

• Cross-platform: It should support multiple device types/vendors/services

• Modelled: The source should model the intended state, not the path to it

• Extensible: Allow for integrations with custom data sources

Constraints
What does network automation need to be?

• Simple: You shouldn’t need a CompSci degree to author changes

• Practical: Cover the 95% case - less on exotic configuration

• Decoupled: Able to view actual configuration prior to deployment

• Integrable: Should be compatible with different deployment systems

• Adoptable: A pathway to allow users to slowly adopt the system

What does this look like?

Configuration Generation Configuration Deployment

Implementation
We CAN do better!

Why did you make Hyron?

The “Eureka” Moment
AKA: Updating ACLs is tedious

• I wanted only Cloudflare to talk to my EC2 instances on TCP 80/443

• Cloudflare can update it’s IP ranges at any time

• Cloudflare exposes an API to enumerate its current IP ranges

• I wanted to keep an EC2 SG in sync with CF

The Other Side of the Coin
AKA: Updating ACLs is unavoidable

Hey team,

Could you please implement the following firewall rules and
revert to the same?
18.44.87.0/25 -> DMZ Network on TCP 443
OfficeNet -> OracleWeb on TCP 80
ANY -> DMZ on TCP 22

There will be additional requests coming today to support Cloud
migration project.
Cheers,
Your Least Favourite Customer

Customer requests to
change ACLs can be:

• Ambiguous

• Insecure

• Frequent

• Wrong

It Gets Even Better!
AKA: Humans suck at ACLs

• How many duplicate objects are in your corporate firewalls?

• When did you last audit/validate all your firewall rules?

• Do all your engineers adhere to the same naming standards?

• How many redundant rules do you have?

• If the customer asked for an ACL audit right now, could you deliver?

In short:
ACLs are something we need to manage,

but we really, really suck at it

What Hyron is not…

Have we seen this before?
Think again!

• Hyron is not a templating engine

• Hyron does not handle deployment

• Hyron is not vendor-specific

• Hyron is not a proof-of-concept

• Hyron is not for sale

So, what is this Hyron thing then?

Hyron from 10,000 Feet
What does automating ACLs look like?

• Hyron is a Python3 library - not a CLI tool

• Try it yourself: pip install hyron hyrontools

• Hyron models ACLs before rendering them

• This allows for intelligent inspection of rulesets

• Currently supports prefix list deduplication

• Planned support for redundant ACL detection

• Hyron can load prefix lists from remote sources

• Built-in support for Cloudflare, Team Cymru Fullbogons

• Supports region and service specific lists from AWS

What Does a Ruleset Look Like?
Yet another YAML DSL

 meta:

 title: Example

 owner: Jacob Neil Taylor

 import_builtin: true

 objects:

 prefixlists:

 internal:

 type: static

 items:

 - 10.1.0.0/24

 dmz:

 type: static

 items:

 - 10.0.0.0/24

 rules:

 permit-internet-access:

 src: internal

 dst: any

 app: any

 meta:

 jsrx_context: zonal

 jsrx_from_zones: inside

 jsrx_to_zones: outside

 permit-cloudflare-access:

 src: cloudflare

 dst: dmz

 app: https

 meta:

 jsrx_context: zonal

 jsrx_from_zones: outside

 jsrx_to_zones: dmz

 artifacts:

 srxfwconf:

 meta:

 created: 26-02-2022

 apply_group: "HYRON_SECURITY_POLICY"

 files:

 config.txt:

 renderer: jsrx-cmd

 ruleset: example

 config:

 apply-group: "HYRON_SECURITY_POLICY"

What Does a Render Look Like?
Game, set, match

delete groups HYRON_SECURITY_POLICY

set groups HYRON_SECURITY_POLICY security address-book global address pfx4-0.0.0.0-0 0.0.0.0/0

set groups HYRON_SECURITY_POLICY security address-book global address pfx4-10.0.0.0-24 10.0.0.0/24

set groups HYRON_SECURITY_POLICY security address-book global address pfx4-10.1.0.0-24 10.1.0.0/24

set groups HYRON_SECURITY_POLICY security address-book global address pfx4-103.21.244.0-22 103.21.244.0/22

… snip …

set groups HYRON_SECURITY_POLICY security address-book global address pfx6-2c0f:f248::-32 2c0f:f248:0000:0000:0000:0000:0000:0000/32

set groups HYRON_SECURITY_POLICY security address-book global address pfx6-::-0 0000:0000:0000:0000:0000:0000:0000:0000/0

set groups HYRON_SECURITY_POLICY security address-book global address-set nets_any address pfx4-0.0.0.0-0

set groups HYRON_SECURITY_POLICY security address-book global address-set nets_any address pfx6-::-0

set groups HYRON_SECURITY_POLICY security address-book global address-set nets_cloudflare address pfx4-103.21.244.0-22

… snip …

set groups HYRON_SECURITY_POLICY security address-book global address-set nets_cloudflare address pfx6-2c0f:f248::-32

set groups HYRON_SECURITY_POLICY security address-book global address-set nets_dmz address pfx4-10.0.0.0-24

set groups HYRON_SECURITY_POLICY security address-book global address-set nets_internal address pfx4-10.1.0.0-24

set groups HYRON_SECURITY_POLICY security policies from-zone inside to-zone outside policy inside_outside_1 match source-address nets_internal

set groups HYRON_SECURITY_POLICY security policies from-zone inside to-zone outside policy inside_outside_1 match destination-address nets_any

set groups HYRON_SECURITY_POLICY security policies from-zone inside to-zone outside policy inside_outside_1 match application junos-tcp-any

set groups HYRON_SECURITY_POLICY security policies from-zone inside to-zone outside policy inside_outside_1 match application junos-udp-any

set groups HYRON_SECURITY_POLICY security policies from-zone inside to-zone outside policy inside_outside_1 then permit

set groups HYRON_SECURITY_POLICY security policies from-zone outside to-zone dmz policy outside_dmz_1 match source-address nets_cloudflare

set groups HYRON_SECURITY_POLICY security policies from-zone outside to-zone dmz policy outside_dmz_1 match destination-address nets_dmz

set groups HYRON_SECURITY_POLICY security policies from-zone outside to-zone dmz policy outside_dmz_1 match application junos-https

set groups HYRON_SECURITY_POLICY security policies from-zone outside to-zone dmz policy outside_dmz_1 then permit

set apply-groups HYRON_SECURITY_POLICY

Deployment Artifacts
How do we “compile” configuration?

• Each target is different, so how can we remain independent?

• Put everything in a ZIP file!

• Metadata is needed for deployment systems

• Allows for comparison between packages

How do we actually deploy though?

It’s up to you!

Cassan
What does deploying ACLs look like?

• There is an existing deployment system in place

• It’s called Cassan

• It’s an MDP - Minimum Demonstrable Product

• Serverless solution based on AWS Lambda/S3

• Absolutely not ready for Prod

• Needs features like deployment windows/scheduling

Generation

Ingest

Deployment

PR Enrichment

Demonstration
Do you believe in magic?

Join us @ Atlassian
AKA manager-initiated plea for candidates

Any questions?

