AusNOG 2019 *MPLS/SR deployment experiences in Australia and SRv6 deployment learnings from Japan* 

Aleksandr Karavanin - Cisco

# Technology Overview

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

## Focus - Network Simplification

|                       | Existing | Existing     | Next Gen                   |
|-----------------------|----------|--------------|----------------------------|
| Technology Arch.      | IP/MPLS  | Unified MPLS | Segment Routing            |
| Provisioning          |          |              | NETCONF, YANG              |
| Programmability       |          |              | Path Control Element (PCE) |
| Services (L2/L3 VPN   | LDP BGP  | LDP BGP      | BGP                        |
| Scaling Mechanism     |          | BGP-LU       |                            |
| TE, FRR               | RSVP     | RSVP         | Segment Pouting            |
| Overlay Protocol      | LDP      | LDP          | Segment Kouting            |
| Connectivity Protocol | IGP      | IGP          |                            |

# Segment Routing

- Ingress node imposes the sequence of instructions that encodes the desired path (the list of segments) in the packet header
  - Rest of the network executes the instructions in the packet's header
- The list of segments is specified in a policy: an SR Policy
- A SID list is represented as <S1, S2, ... Sn> where S1 is the first SID

### SR - Two dataplane instantiations



Segment Routing

#### MPLS

- leverage the mature MPLS HW with only SW upgrade
- 1 segment = 1 label
- a segment list = a label stack

IPv6

- leverages RFC8200 provision for source routing extension header
  - 1 segment = 1 address
  - a segment list = an address list in the SRH

### IPv6 adoption is a reality



% Web pages available over IPv6

uluilu cisco Source: 6lab.cisco.com – World maps – Web content

# Global IPv6 traffic grew 243% in 2015

Globally IPv6 traffic will grow 16-fold from 2015 to 2020

IPv6 will be 34% of total Internet traffic in 2020

## SRv6 – Segment Routing & IPv6

SR for anything else

IPv6 for reachability

- Simplicity
  - Protocol elimination
- SLA
  - FRR and TE
- Overlay
- NFV
- SDN
  - SR is de-facto SDN architecture
- 5G Slicing

# SR/SRv6 Adoption in the region

### MPLS/SR Typical deployment for NBN RSPs

- MPLS/SR + PWHE (EVPN) to BNG
  - SR underlay

- Dual Stack IPv4/v6 IPoE/PPPoE
- Growth of IPv6 only demand

• BGP Control Plane



### Australian broadband: Public IPv4 clients over IPv6 - MAP-T



https://tools.ietf.org/html/rfc7599

### Australian broadband: Public IPv4 clients over IPv6 - MAP-T



https://tools.ietf.org/html/rfc7599

### SRv6 DC use case by LINE

https://www.janog.gr.jp/meeting/janog43/application/files/7915/4823/1858/janog43-line-kobayashi.pdf





### SRv6 DCI use case by Rakuten

https://www.janog.gr.jp/meeting/janog43/application/files/1515/4837/9199/janog43-wbdci-fujii.pdf

#### DCI mid/long term roadmap



http://imcreator.com/free/transportation/the-endless-roa

## Softbank 5G vision

#### SRv6 for "Network Slicing" and "Edge Computing"



https://www.softbank.jp/corp/news/press/sbkk/2019/20190424\_03/

## **SR DEMO**

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

### Conclusion

SRv6 is getting momentum!



Simple, scalable, flexible

Unified Data Plane with Network Programmability



Numberous use-cases: FRR, TE, SDN, NFV