SP Routing Innovation with Segment Routing, VXLAN and EVPN

Claudiu Captari Systems Engineer claudiu@arista.com

Confidential. Copyright © Arista 2018. All rights reserved.

Agenda

- Cloud Principles and Cloud-Grade Routing
- Cloud-Grade Routing Innovations
 - Scale-Out Architectures with Merchant Silicon Platforms
 - Simplify Operations with Modern Open Protocols
 - Software-Driven Control for Automation and Visibility
- Key Takeaways

L	

Cloud Principles Applied to Network Transformations

Legacy Networking

Cloud Networking

Merchant Silicon Influence in Mega Cloud Providers

Broadcom 'Jericho' Silicon

NETFLIX

Dave Temkin VP Networks

Nov 2017

Dave Temkin <

Super proud of my team - today they removed the last "big expensive router" from our network; [...]

Inexpensive commodity switches run the entire Netflix Open Connect CDN!

5:24 AM - 10 Nov 2017

Building Cloud-Grade OS

Modern OS	Lean OSProgrammable @ all layers	
Spine/Leaf Optimized	Enhanced Load BalancingOptimal convergence	
Automation	NETCONF/YANGTurnkey Automation	
Monitoring @ Scale	 Large-scale ECMP, Monitoring with BMP OpenConfig → State Streaming 	
Agile Certification	 Virtual/Container based OS to simulate large-scale networks 	

Fundamental Requirements of a Cloud OS

Traditional Service Provider Architecture Building Blocks

Connecting Transport to Places In The Cloud (PIC)

Any-Cloud Platform (Cloud / Service Domain)

Transport Domain

Scale Up vs Scale Out

Legacy (I+I) Single Vendor Solution

- Single Vendor Solution
- Difficult to Upgrade Software
- Additional Capacity Via System or Linecard Replacement
- Replacement
- Forklift Lowers Investment Protection
- 100% 'Peak Capacity' Loss During Outage/Maintenance

Leaf / Spine (N+1, N = Peak Capacity)

Multi Vendor Solution

- Hitless Upgrades
- Effortless Scale (Spine for Capacity, Leaf for Ports)
- Higher Investment Protection Without Forklifts
 - I/N% 'Peak Capacity' Loss During Outage/Maintenance (25% n=4, 6.25% n=16, 0.8% n=128)

Building an SP Core Using Disaggregated Routing

Use Of Merchant Silicon Allows For Cost Effective Consolidation of L2 and L3 Elements At Each Location

Core Transport Summary

Traditional Transport Multi-label MPLS Transport

High Density 10G/100G merchant silicon for MPLS transport Segment Routing SDK programmability or third-party PCE integration

Scalable and Simplified, Traffic Engineering

Single scalable BGP control plane for Layer 2 and 3 VPNs

What is Segment Routing (SR)?

Basic Philosophy

- Reuse IGP and BGP to distribute the labels
- Simplify
 - Protocols required eliminate need for additional signaling protocols
 - Removes per tunnel state (control and data-plane) though out the network
- Provide ECMP
- Encode source routing using MPLS label stack in the data-plane

Concepts

- Segment Routing envisions the network as a collection of 'topological sub-paths' also called 'segments'.
- Global labels
- Local labels
- Packet is transmitted from source with a list of Segment IDs (or SIDs)

Applicability

- Non-TE Replacement -> Remove redundant signaling protocols (LDP), and follow SPF
- TE Alternative -> External Controller for fine-grained or Macro TE

https://www.arista.com/assets/data/pdf/Whitepapers/MPLSSegmentRouting Whitepaper.pdf

Segment Routing – Operation Overview

- SR divides the network into "segments" identified by a Segment ID (SID)
 - Global SIDs identify nodes (loopback ip), prefix or Anycast SID (shared loopback IP)
 - » All nodes in the SR domain use same SID to identify the prefixes, node or Anycast an SID reducing data plane state
 - Local significant SIDs identify, the Adjacency links in the network
 - \gg Only the originating Node understands the advertised Adjacency SID
 - Both local and global SIDs are advertised as TLV extensions to the IGP (IS-IS/OSPF)
 - The SID is encoded as an MPLS Label in the forwarding plane

Segment Routing Analogy

Segment Routing Analogy

Segment Routing – Evolution of Core Routing

	LDP	RSVP-TE	SR
Overview	MP2P	P2P	MP2P
Operation	Simple	Difficult	Simple
Separate Label Distribution Protocol	Yes	Yes	No
Dependencies	Relies on IGP	Relies on IGP extensions	Relies on IGP
Label Allocation	Locally significant	Locally significant	Global (local ADJ SID)
MPLS ECMP	Yes	No	Yes
Traffic Engineering (TE)	No	Yes	Yes
TE Scale	N/A	Medium/Low N(N-1)	High
Fast Reroute	Partial LFA (<100%)	Yes Node/Link Protection	Yes TI-LFA
Multicast	Yes mLDP	Yes P2MP LSP	No Deployed With Parallel MC Control Plane
IPv6	Limited Extensions Required	Limited Extensions Required	Native

A Transformation in Routing Protocols is Required

Source: MPLS Segment Routing, Driving a modern approach to MPLS transport - https://www.arista.com/assets/data/pdf/Whitepapers/MPLSSegmentRouting_Whitepaper.pdf

SR Use Cases for SPs

• MPLS in the DC/POP

- SR based L-S DC design
- EVPN MPLS for L2 or L3 EVPNs

- Solving the "Ring" topology problem
- Allows moving to L3 design
- May inter-work with RSVP-TE in core (binding SID) or tunnel over LDP (SR Mapping Server)
- Mainly looking at SR for TI-LFA

Metro Core

SR

LDP RSVP-TE

SR

SR

Metro

Egress Peer Engineering - Traditional approach

- Policy on ASBR4 set high local-preference for prefix A from AS3
 - Preferred path for Prefix A via NNI 3.1
- Packet with destination IP address matching prefix "A"
 - All sent out of NNI 3.1, regardless of the ingress ASBR
- If ASBR 4 and 5 visible to each of the ingress ASBRs
 - Policy on ingress ASBR's may choose and egress ASBR (ASBR 4 or 5)
 - Can chose ASBR for exit but still not the actual NNI.

Approach limited to

- Egress link selection per destination prefix, on egress ASBR
- Egress ASBR selection per Prefix on ingress ASBR, but without visibility to egress link
- No Global Policy!!!

Egress Peer Engineering - SR approach

- Path advertised by Peer AS
- ASBR advertise all path and link state info to the controller via BGP-LS
- From LS information and constraints controller computes best path for prefix A.
 - Path decision can be per ingress ASBR
 - Including the NNI interface in the path along with the intra-AS path within AS1
- ASBR3 encapsulates traffic with Segment path to reach ASBR4 and exit NNI3.1.

- Internal path provisioning from ingress ASBR to egress ASBR, GRE, LDP, SPRING Node-SID, RSVP-TE
- Label for NNI selection on egress ASBR- BGP-LU and SPRING peering-SID

EVPN – Extending Cloud Into Routing Services

MPLS EVPN – Layer 3 VPNs

- Provide Layer 3 VPNs across a MPLS transport
 - Alternative solution to IP-VPNs (RFC 2746/RFC 4364)
 - BGP control-plane with EVPN NLRI (RFC 7432)
 - Type 5 route to advertise IP prefixes to emulate an IP VPN like service
 - Prefix advertised with Route-Target (RT), Route-Distinguisher (RD) and MPLS label

Route Types – Type 5 (EVPN MPLS)

EVPN MPLS Type-5 Route

Use Case: MPLS L3 EVPN DCI

Traffic Steering: Automation, Telemetry & State Streaming

- Access to *all* state in the system via standardized (OpenConfig) models
- Full device configuration management via OpenConfig models + CLI
- Supported across all devices
- Standard gRPC transport
 - A transport layer with efficient data encoding!

Summary

Thank You

www.arista.com, eos.arista.com www.youtube.com/user/AristaNetworks http://github.com/arista-eosplus

