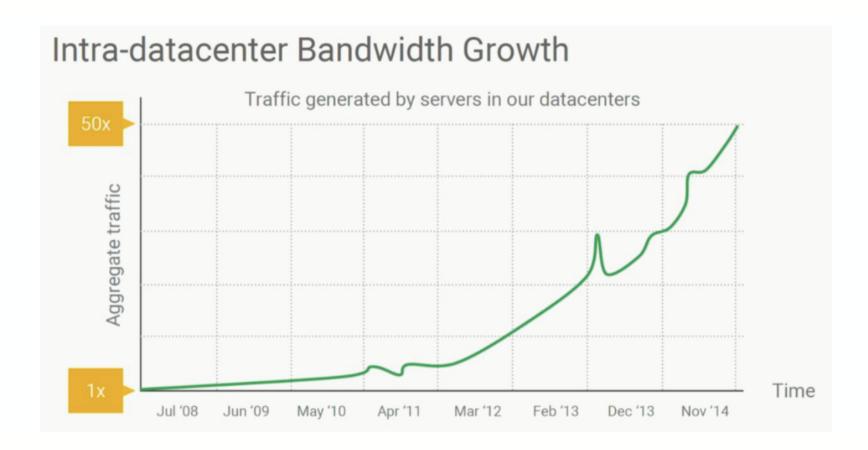

Synopsis

- Bandwidth requirements continue to grow at an exponential pace driven by UHD Content, IOT, Serverless Compute, Machine Learning (ML) and Artificial Intelligence (AI). Both Service Providers and new Cloud operators are racing to adopt the latest technology to keep up with the bandwidth demand in a cost effective manner. With network bandwidth requirements doubling every two years, SPs and Cloud Titans will need 400GE/800GE to help them scale the cloud DC to remain competitive before 2019.
- In this vendor neutral session, we will highlight new 400GE/800GE technology, particularly OSFP and QSFP-DD, and analyse network architecture evolution options. We will also discuss the new 25G and 50G standards and demonstrate how they are the current most economic way to address bandwidth scaling today with the added benefit of providing a future proof pathway to 400G Ethernet and beyond.



400G - Really?

Source: AusNOG 2011. Tim Nagy '100GE Overview and Deployments' http://bit.ly/2xQ4X4v

Need to Scale Cloud Network Bandwidth 2X/Year

Source: Urs Hoelzle, Google Cloud 2015

Need to Scale Cloud Network Bandwidth 2X/Year

Source: Urs Hoelzle, Google Cloud 2015

Doing More With Less - Removing Artificial Limits

	2015	2016	2017	CAGR*	2020*
WA-IX	10Gbps	33Gbps	40Gbps	100%	320Gbps
VIC-IX	15Gbps	47Gbps	75Gbps	124%	839Gbps
SA-IX	500Mbps	1.2Gbps	7Gbps	274%	367Gbps
QLD-IX	3.5Gbps	20Gbps	28Gbps	183%	634Gbps
NSW-IX	50Gbps	80Gbps	140Gbps	67%	656Gbps

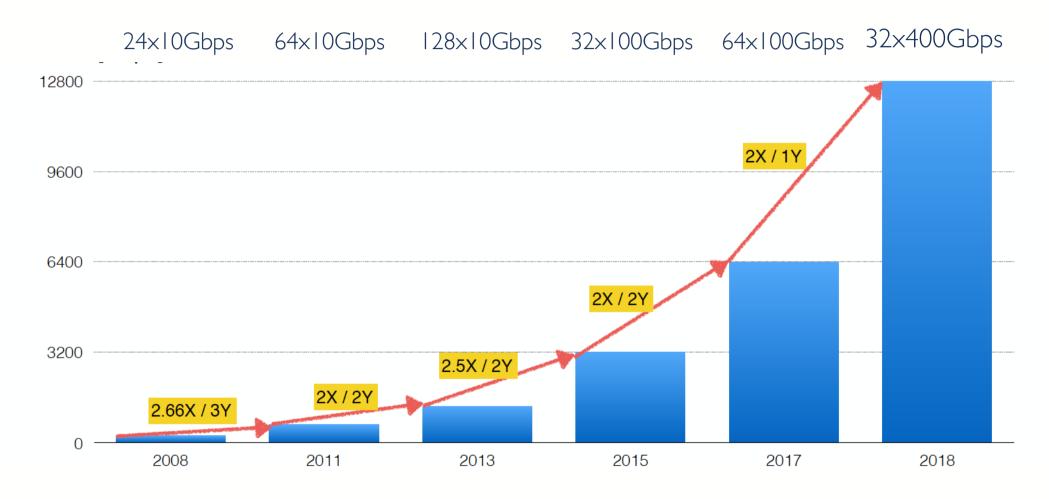
*My Simplistic Projections

TL;DR You Already Paid For The Port – Are You Leveraging Your Investment?

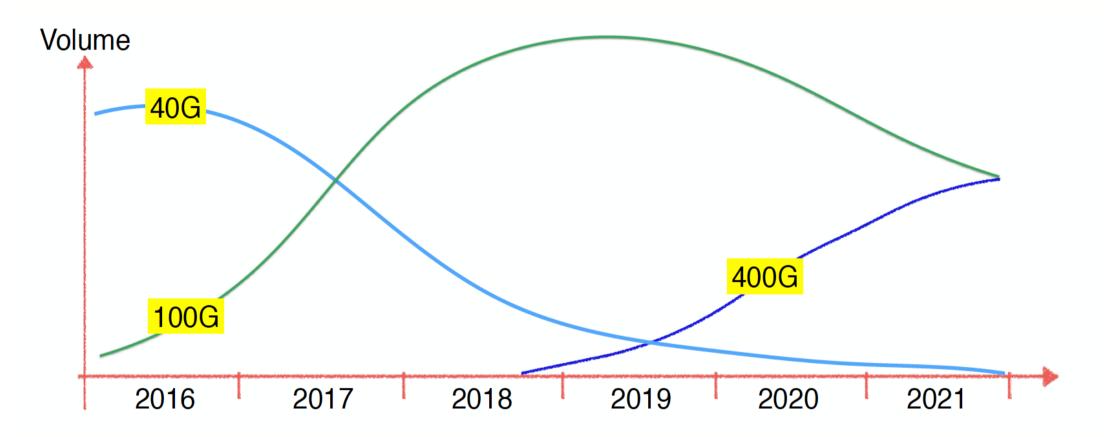
Source: Internet Association of Australia, 2017 AGM

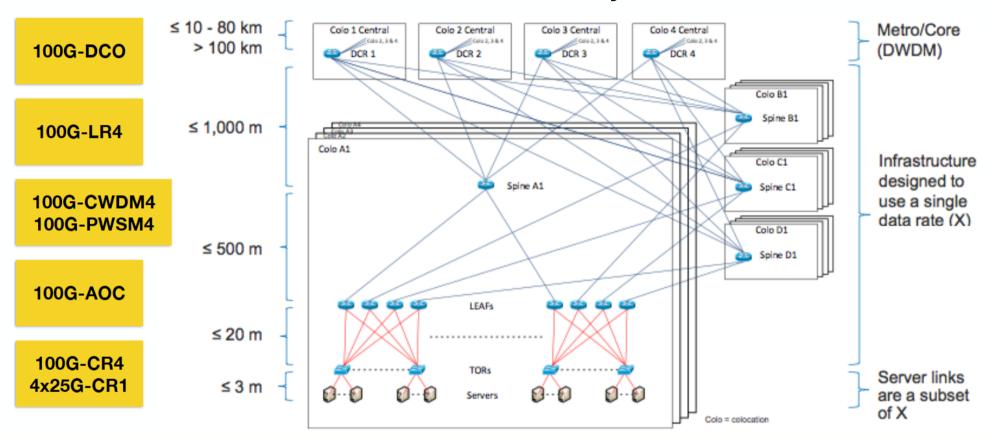
What is Driving Switch BW? Chip I/O is Limited

Switch Chip limited by number of I/O Pins



Single lanes maximize usable connectivity 40G and 100G Use 4 Lanes Today


Lane Speed	10Gbps	25Gbps	→ 50Gbps	100Gbps	
IX	10G	25G	50G	100G	Server
2X	20G	50G	100G	200G	Interface
4X	40G	100G	200G	400G	Spine
8X	-	200G	400G	800G	Interface
Availability	2011	2015	2018	2020	
	4)	∕ears → ← 3 Y	ears 2 Y	ears ->	


Switch Silicon Bandwidth Growth

40G -> 100G -> 400G Switch Port Transition


100G In The Cloud Network Today

100G Ramping Fast – Estimated 5 Million Ports in 2017

Candidate 400G Form Factors: CFP8 v QSFP-DD v OSFP

	CFP8	QSFP-DD	OSFP
Size mm (HxLxT)	41.5×107.5×9.5	18.35×89.4×8.5	22.58×107.8×13.0
Thermal Capacity	12-18W	7-12W	12-15W
Organization	http://www.cfp-msa.org/	http://www.qsfp-dd.com/	http://osfpmsa.org/

CFP8 Lacks Density. Really we need to consider QSFP-DD and OSFP

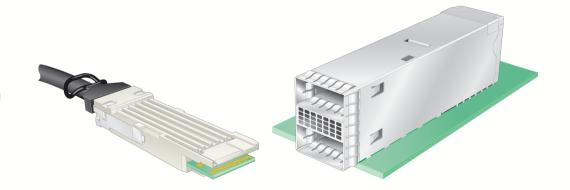
QSFP-DD MSA Form Factor Announcement. 13 March 2017

A total of 62 companies have joined the QSFP-DD MSA to create this new standard.

Eight Lanes at 28 or 56Gbps

• Supports 200G and 400Gbps

High Port Density: 36 per IRU


7.2Tbps with 200G, I4.4Tbps with 400G

Accommodates a Range of Optics

• Up to 12W Thermal Capacity

Pluggable Module Form Factor

Easy to Configure and Service – *Some backward compatibility complexities

Source: http://www.qsfp-dd.com/qsfp-dd-msa-group-announces-form-factor-specification/

OSFP MSA Form Factor Announcement, 17 March 2017

A total of 80 companies have joined the OSFP MSA to create this new standard.

Eight Lanes at 56 or 112Gbps

Supports 400G and 800G (2x400G)

High Port Density: 36 per IRU

• 14.4Tbps with 400G, 28.8Tbps with 800G (72x400G Dual Optics)

High Thermal Capacity

Demonstrated I5W Power Capability

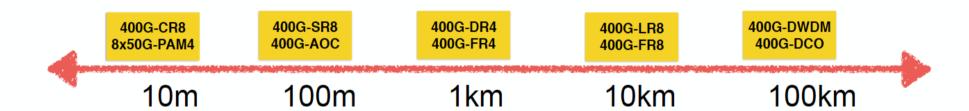
Accommodates A Wider Range of Optics

Datacenter, Metro and Long Reach

Pluggable Module Form Factor

Easy to Configure and Service – New Size

Source: http://osfpmsa.org/press-releases/pr-20170317.html



IEEE 802.3bs 200 Gb/s and 400 Gb/s Ethernet Task Force

Standard	Speed	Technology	Distance
200GBASE-DR4	200Gbps	4 lanes SMF	500m
200GBASE-FR4	200Gbps	4 WDM lanes	2km
200GBASE-LR4	200Gbps	4 lanes WDM	l 0km
400GBASE-SR16	400Gbps	16 lanes MMF	100m
400GBASE-DR4	400Gbps	4 lanes SMF	500m
400GBASE-FR8	400Gbps	8 WDM lanes	2km
400GBASE-LR8	400Gbps	8 WDM lanes	10km

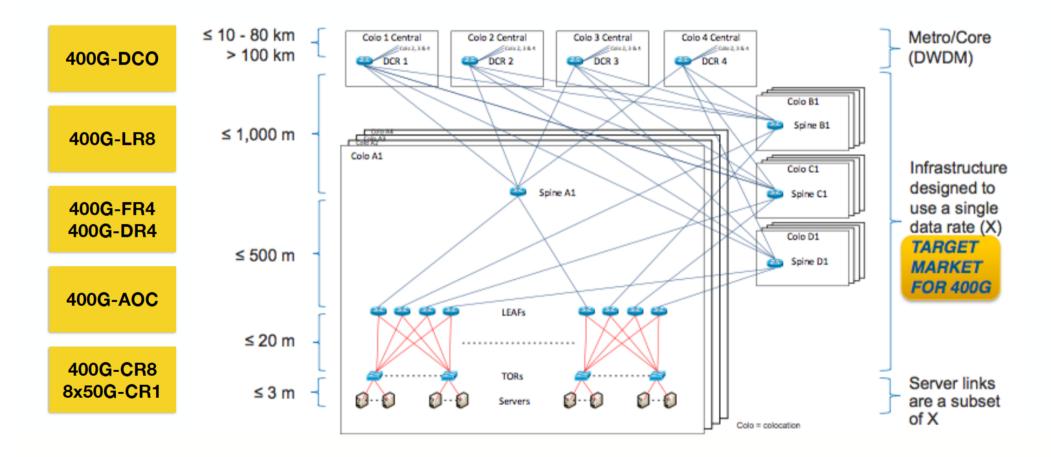
2017: IEEE will complete 802.3bs (400G), 2018: First 400G platforms Expected to Land

400G OSFP Use Cases

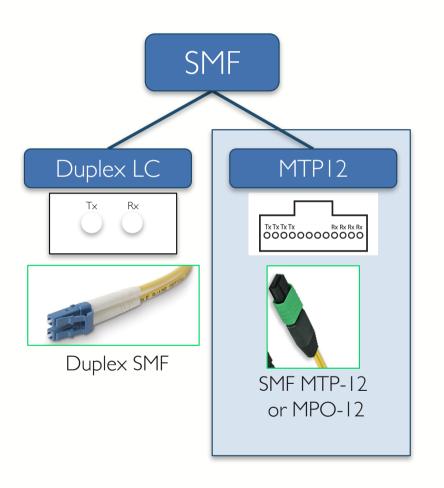
Supports all 400G use cases up to Metro and Long Reach

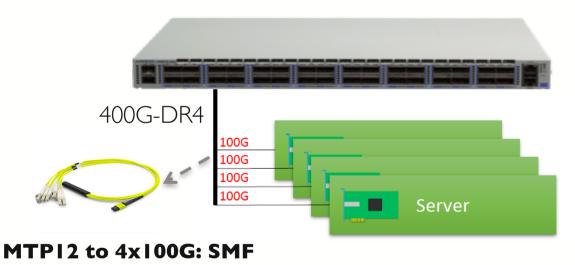
• No single 400G optics technology addresses all market requirements

OSFP Supports Future Dual 400G and 800G Optics

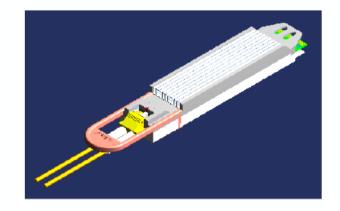

Electrical and thermal performances support eight lanes of 100G

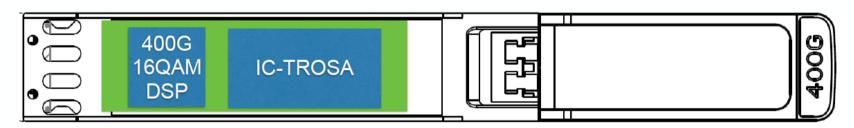
Bulk of 400G Volume will use 100G electrical interfaces


Switches with 100G lane switch silicon expected in 2020


400G In the Cloud Network (2018+)

Future High Density 100G – 400G-DR4

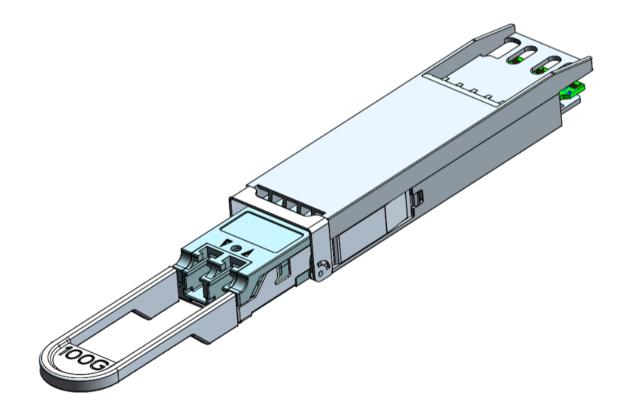

- 400G-DR4 with 8 x SMF
- 4x100G-DRI breakout
- 500m to 2km reach
- 128 x 100GE ports per RU
- 100GE to compute/storage



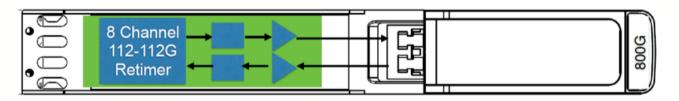
400G-DCO: 100km Reach

400G-16QAM DSP + Coherent Laser

Up to 20 Terabits bandwidth per dark Fiber Power Target < 15W



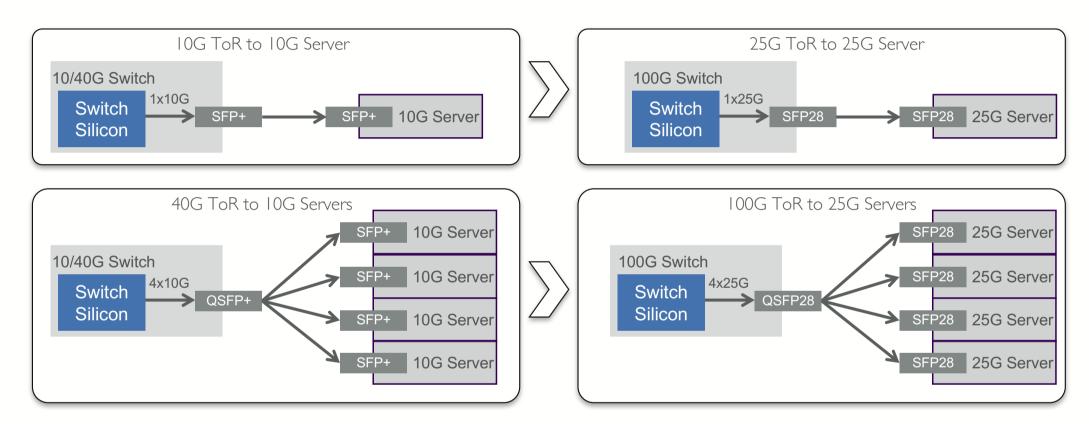
400G Coherent at the same port density as other datacenter Optics


Backwards Compatibility - OSFP to QSFP Adapter

Both QFSP-DD and OSFP Can Provide Backward Compatibility*

Other 400G/800G OSFP Transceivers

Туре	Distance	Cable	Lane Speed	Power
400G-DR4	2km	8 SMF	4 x 100G	10W
400G-FR4	500m-2km	2 SMF	4 x 100G	10W
Dual 400G-DR4	2km	16 SMF	8 x 112G	12W
Dual 400G-FR4	500m-2km	4 SMF	8 x 112G	12W
800G-FR8	2km	2 SMF	8 x 112G	12W
800G-LR8	l 0km	2 SMF	8 x 112G	12W


Let's Not Get Carried Away.

What Do We Do This Year? How Can We Prepare For The Future?

Migration to 25Gbps / SFP28

25GE / SFP28 Can Reuse Existing Cable Infrastructure. Est. >2.5x 25G ports than 40G in 2018

What is Driving Switch BW? Chip I/O is Limited

Switch Chip ports can run from 10Gb/s to 25Gb/s

Switch Chip limited by number of I/O Pins

Single lanes maximize usable connectivity

Single lane 25Gb/s I/O maximizes port count and total bandwidth

Port Speed	Lane Speed (Gb/s)	Lanes / Port	Usable Ports	Total BW
10GbE	10		128	1280
25GbE	25		128	3200
40GbE	10	4	32	1280
50GbE	25	2	64	3200
100GbE	25	4	32	3200

PCIe 3.0 and Network interfaces

Interface	Lane Requirement	Bandwidth Utilization
IOGE	2	62.5%
25GE	4	78.1%
40GE	8	62.5%
100GE	16	78.1%

- PCI-Express 3.0 supports 8 GigaTransfers per second (GT/s) per lane
- 25Gbps / SFP28 is more bandwidth efficient than I 0GE or 40G
- PCle 3.0 x 8 is widely shipping (dual port SFP28)
- First 25/50/100 Plugfest Jan 2017 by 25GE Consortium at UNH-IOL

2017: Leverage 25G and 100G Investments

Compute

Storage

Leaf - Spine

IOGbE to 25GbE

40GbE to 50GbE

40GbE to 100GbE

- 25GbE uses same copper or fiber as 10GbE
- No changes to cable plant*
- 50GbE uses half the lanes compared to 40GbE
- 2X more nodes per switch

 2.5X performance increase for every link

 Better load distribution and lower latency

2.5X Higher Server Bandwidth

100% More Storage Nodes 2.5X
Higher Network
Capacity

25G Transceiver and cable

Standard	Distance support
25GBASE-SR	Up to 70m over Parallel OM3 Multi-mode fiber and 100m over parallelOM4 Multi- mode fiber
25GBASE-LR	Up to 10km over Single-mode fiber
25GBASE-AOC	Up to 30m pre-terminated 25GbESFP Active optical cable
25GBASE-CR	Up to 3m pre-terminated 25GbESFP twinax copper cable

