
© Copyright 2017 Opengear, Inc. www.opengear.com 1

Choosing an orchestration tool: Ansible and Salt

Ken Wilson
Opengear

Introduction

What is Orchestration, and how is it different from Automation?

•  Automation involves codifying tasks like configuring a webserver, or
upgrading a software package, so that they can be performed quickly, and
without error.

•  Orchestration involves codifying processes like deploying an application,
where many tasks may need to take place on disparate devices.

•  Traditionally been part of the Software and Ops world, but more and more
applicable to network devices.

Introduction

This talk is mostly going to focus on the automation component of
Orchestration.

The tools discussed are capable of both; my aim today is to give you enough of
an introduction that you can set aside some time to spin up a VM and try
them out.

Each of the tools has its own jargon, but at their heart, they work the same
way, and they don’t require you to be a developer to use them.

Introduction

2016-2017

AusNOG 2016 – Central Orchestration of Network Infrastructure – NetOps
meets DevOps

-  Presentation covered: Puppet, Chef, and a little bit of Ansible

Comments from attendees

-  Attendee from a small regional ISP: “Wow, I’ve seen these tools used
for server maintenance, but not for network gear. This would really
simplify my life!”

-  Attendee from G**g**: “Doesn’t everyone do this?”

-  Another Attendee: “What about Salt! Everyone forgets Salt”

Changes in Network Orchestration

In 2017, Ansible gets a lot of airtime for network orchestration, more than
Puppet and Chef.

Salt is also heavily promoted by companies like Cloudflare

This talk will focus on Ansible and Salt:

-  What does their architecture look like.

-  What comes for free vs what you pay for.

-  Configuration examples for Network Orchestration/Automation using
NAPALM

l  NAPALM?

What is NAPALM?

Network vendors love automation/orchestration tools

-  They build a module for configuring their devices for Puppet/Chef/
Ansible/Salt

-  Write a whole bunch of whitepapers demonstrating its use

-  Customer writes a whole bunch of configuration using the module

-  Customer goes to evaluate another vendor

l  The module is different :(

-  Enter NAPALM (Network Automation and Programmability Abstraction
Layer with Multivendor support).

What is NAPALM?

NAPALM is a Python library that can provide a unified API to a number of different router vendors.

The napalm-ansible module provides a way to call the NAPALM API inside Ansible Playbooks

NAPALM itself is integrated inside Salt from version 2016.11.0 (Carbon) (driven by Cloudflare)

What is NAPALM?

Supported Network Operating Systems are:

•  Arista EOS

•  Cisco IOS, IOS-XR, NX-OS

•  Fortinet FortiOS

•  IBM

•  Juniper JunOS

•  Mikrotik RouterOS

•  Palo Alto NOS

•  Pluribus NOS

•  VyOS

What is NAPALM?

It isn’t magic:

•  In general, you’re still going to be writing configuration templates for your
different vendors.

•  Template then gets merged into running config, and can be checked for
diffs.

•  Power comes from the consistent “getters” API.

•  Allows “verifiers” to be written to check the bits of config you care about

•  Work continues on generalized configuration templates for true cross-
platform configuration, as well as Netconf and YANG support.

Ansible

Developed by Redhat, written in Python

Billed as an “masterless and agentless” automation/orchestration tool

•  Uses SSH as transport, authentication is generally done using SSH keys

•  Ships Python modules to the target device, which are then executed.

•  When being used with ansible-napalm, transport will vary based on the
device being managed.

•  Can log to a variety of log services

Ansible

Ansible uses the concept of a playbook to define a series of steps (or “plays”)
that map a series of execution steps (or tasks) to a group of hosts.

These playbooks are written in YAML.

Each task (which calls an Ansible module) should be idempotent – running it
many times will give the same result, and the task definition should
contain enough detail to allow it to also be used to check that the task has
been carried out successfully.

Handlers can also be defined for tasks that may need to be called only once
after a number of operations. For example, if a number of tasks are
concerned with changing webserver configurations, then the webserver
only needs to be restarted once at the end.

Ansible

In Ansible, hosts are defined inside an inventory. The inventory is often a
static file, but it can be dynamic when that makes sense (for managing
Docker containers, or VMs).

The inventory allows administrators to groups hosts based on their role
(webservers, load-balancers, border-routers etc), as well as associating
variables with individual or groups of host. These variables can be
referenced inside the Playbooks to customize the particular task for the
host.

Variables can also be retrieved at application time from the hosts. These
variables are called “Facts”

Ansible - Example

Example – Applying templated configuration to two Cisco Devices

Requirements:

 - Devices must have SSH and SCP enabled

Source is available at:

 https://github.com/kenwilson/central-orchestration-ausnog2017/

Config Apply Playbook and Template

© Copyright 2016 Opengear, Inc. www.opengear.com

- name: Apply basic config
 hosts: cisco-cpe

 tasks:
 - name: Generate local configuration for hosts
 local_action: template dest={{ playbook_dir }}/gen-config/initial-
{{ hostname }}.conf src={{ playbook_dir }}/source/initial.j2

 - name: Gen .diff file (apply change)
 napalm_install_config:
 hostname: "{{ host }}"
 username: "{{ username }}"
 password: "{{ password }}"
 dev_os: "{{ dev_os }}"
 config_file: gen-config/initial-{{ hostname }}.conf
 commit_changes: True
 replace_config: True
 diff_file: initial-{{ hostname }}.diff
 optional_args: {'auto_rollback_on_error': False}

!
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname {{ hostname }}
!
boot-start-marker
boot-end-marker
!
enable secret 5 1WBBw$3WDO6jJHSwFtuw4Wk38Zv/
enable password notdefault
!
no aaa new-model
no ip routing
!
!
no ip cef
!
!
!
!
!

Get Facts Playbook and Inventory

© Copyright 2016 Opengear, Inc. www.opengear.com

- name: Get Device Facts
 hosts: cisco-cpe

 tasks:
 - name: Get Facts
 napalm_get_facts:
 hostname: "{{ host }}"
 username: "{{ username }}"
 password: "{{ password }}"
 dev_os: "{{ dev_os }}"
 filter: 'facts,interfaces,interfaces_ip,mac_address_table'
 register: results

 - name: print data
 debug: var=result

Cisco CPE devices
[cisco-cpe]
r1 host=192.168.82.76 hostname=r1-cpe.opengear.com
r2 host=192.168.82.77 hostname=r2-cpe.opengear.com

Default variables for Cisco devices managed via NAPALM
[cisco-cpe:vars]
username=admin
password=default
dev_os=ios
ansible_connection=loca

Run Output

© Copyright 2016 Opengear, Inc. www.opengear.com

kenw@kenw-srv:~/src/central-orchestration-ausnog2017/ansible-napalm-ios$ ssh
admin@192.168.82.77
Password:

r2-cpe.opengear.com#conf t
Enter configuration commands, one per line. End with CNTL/Z.
r2-cpe.opengear.com(config)#hostname r2-cpe-modified.opengear.com
% Hostname "R2-CPE-MODIFIED. " is not a legal LAT node name, Using
"CISCO_CC0008"
r2-cpe-modified.open(config)#end
r2-cpe-modified.opengear.com#exit
Connection to 192.168.82.77 closed.
kenw@kenw-srv:~/src/central-orchestration-ausnog2017/ansible-napalm-ios$ ansible-
playbook config.play -i inventory

PLAY [Apply basic config]
**

TASK [Gathering Facts]

**
ok: [r1]
ok: [r2]

TASK [Generate local configuration for hosts]
**
ok: [r1 -> localhost]
ok: [r2 -> localhost]

TASK [Gen .diff file (apply change)]

ok: [r1]
changed: [r2]

PLAY RECAP

r1 : ok=3 changed=0 unreachable=0 failed=0
r2 : ok=3 changed=1 unreachable=0 failed=0

kenw@kenw-srv:~/src/central-orchestration-ausnog2017/ansible-napalm-ios$ cat initial-
r2-cpe.opengear.com.diff
+hostname r2-cpe.opengear.com
-hostname r2-cpe-modified.opengear.com

Ansible – Free vs $$

Out of the box, Ansible is designed around the user running Ansible playbooks
to push and verify configuration.

•  Very basic automation of playbook scheduling is included (ansible-pull +
cron)

•  For more, this is where Ansible Tower ($$) comes in

l  Schedule Playbook runs

l  Real time job status updates

l  Job logging

l  Lots more

Salt

Developed by SaltStack, written in Python

The architecture is based around a central server (salt-master), with agents
called salt-minions running on the devices under management

•  For devices that can’t run an agent, a “proxy-minion” process can be run
on a server, which then communicates with the device using its native
protocols.

•  Communications between the server and the minions uses ZeroMQ by
default.

•  All operations are scheduled and logged by the central server

Salt

Salt has two types of modules: execution modules, and state modules.

Execution modules are used to perform actions

State modules use executions modules to make a device conform to the
desired state.

Execution modules are generally run as once-off commands, while state
modules are more like Ansible Playbooks

Salt Architecture

The state module uses state definitions, which are written as SLS (SaLt State)
files. They can be written in many languages, but the default is YAML (like
an Ansible playbook)

These are stored centrally on the master, in a storage facility called the Salt
Pillar.

The salt-minions retrieve these state file definitions, and other items (like
variable definitions) from the Salt Pillar over their message bus.

Salt Architecture

Like Ansible, variables can be defined locally in the state file, and can also be
retrieved from the devices under management. Salt calls these variables
“grains”. Salt can also store variables centrally in the Pillar.

Rather that specifying the devices that a state or action applies to in the state
definition, Salt allows that to be specified during application time, using
static data stored inside the pillar, as well as grains that are retrieved from
the managed devices.

Salt

This description barely brushes the surface of what Salt can do.

It is more complex than Ansible:

•  Requires a central server, along with a fair amount of configuration

•  Proxy minions require a process each, as well as configuration stored on
the central server

•  Higher learning curve

Salt - Example

Example – Applying templated configuration to two Cisco Devices

Requirements:

 - Devices must have SSH and SCP enabled

Source is available at:

 https://github.com/kenwilson/central-orchestration-ausnog2017/

Salt Proxy Minion Config

© Copyright 2016 Opengear, Inc. www.opengear.com

proxy:
 proxytype: napalm
 driver: ios
 host: 192.168.82.76
 username: admin
 password: default
 optional_args:
 auto_rollback_on_error: False

#R1 specific variables
hostname: r1.cpe.opengear.com

Salt State File and Template

© Copyright 2016 Opengear, Inc. www.opengear.com

proxy:
 proxytype: napalm
 driver: ios
 host: 192.168.82.76
 username: admin
 password: default
 optional_args:
 auto_rollback_on_error: False

#R1 specific variables
hostname: r1.cpe.opengear.com

full_config:
 netconfig.managed:
 - template_name: salt://router-config.j2
 - replace: True

Salt State File and Template

© Copyright 2016 Opengear, Inc. www.opengear.com

full_config:
 netconfig.managed:
 - template_name: salt://router-config.j2
 - replace: True

!
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname {{ pillar.hostname }}
!
boot-start-marker
boot-end-marker
!
enable secret 5
1WBBw$3WDO6jJHSwFtuw4Wk38Zv/
enable password notdefault
!
no aaa new-model
no ip routing
!
!
no ip cef
!
!

Salt Output

© Copyright 2016 Opengear, Inc. www.opengear.com

kenw@kenw-srv:~/src/central-orchestration-ausnog2017/salt-napalm-ios$
sudo salt r1 state.sls config
r1:

 ID: full_config
 Function: netconfig.managed
 Result: True
 Comment: Configuration changed!
 Started: 17:33:50.636394
 Duration: 33202.776 ms
 Changes:

 diff:
 +hostname r1.cpe.opengear.com
 -hostname r1-modified.cpe.opengear.com

Summary for r1

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 33.203 s

kenw@kenw-srv:~/src/central-orchestration-ausnog2017/salt-napalm-ios$
sudo salt -G 'os:ios' net.load_template salt://router config.j2 replace=True

r2:

 already_configured:
 False
 comment:
 diff:
 +hostname r2.cpe.opengear.com
 -hostname r2-cpe.opengear.com
 loaded_config:
 result:
 True
r1:

 already_configured:
 False
 comment:
 diff:
 +hostname r1.cpe.opengear.com
 -hostname r1-cpe.opengear.com
 loaded_config:
 result:
 True

Salt – Free vs $$

SaltStack does have an Enterprise version that adds a number of extra
features, but the OSS release allows a more sophisticated Automation and
Orchestration setup than Ansible.

However, this comes at the cost of the extra effort for setup.

Conclusion

I don’t know your requirements, you do.

There are good communities around both products.

You don’t need to do everything right now, even a setup like the basic
examples I’ve shown is a start

Try them out!

Further Information

Ansible + Napalm:

https://pynet.twb-tech.com/blog/automation/napalm-ios.html

Salt + Napalm:

https://mirceaulinic.net/2016-11-17-network-orchestration-with-salt-and-
napalm/

