

Inferring Interconnection congestion using Mlab NDT and Paris Traceroute data

Xiaohong DENG Yun FENG Vijay Sivaraman

Amogh DHAMDHERE Kc CLAFFY

Center for Applied Internet Data Analysis

*Aims: Inferring inter-connection point congestions

- *Challenges of using crowd sourcing measurement platforms
- *Addressing Challenge 1
- *Build Fine-grained network tomography techniques

*IMC'17 accepted

* Oxerxiew: This Talk

*Infer and localize congestion on end-to-end paths

*With particular focus on points of interconnections between ISPs

*As of February 2017 the M-Lab infrastructure was able to measure between 0.3% and 9% of AS-level interconnections of access ISPs in US.

*Between 79% to 90% of AS-level interconnections traversed on paths from US ISPs to popular content providers were not testable using M-Lab's server infrastructure.

*Challenges: Crowd source testing platform AS link coverage

- * 1.Fine-grained network tomography techniques not supported by existing throughput measurement platforms.
- *2. Existing measurement platforms do not provide sufficient visibility of paths to popular content sources, and only capture a small fraction of interconnections between ISPs.
- * 3. Crowdsourcing measurements inherently risks sample bias: using measurements from volunteers across the Internet leads to uneven distribution of samples across time of day, access link speeds, and home network conditions.

be address

Challenges:

- * Path information is not always available from largescale throughput measurement platforms.
- *M-Lab collects *paris-traceroutes* from M-Lab servers toward clients that run measurements against their infrastructure.
- * Using it as input to a tomography algorithm is challenging due to issues with measurement synchronization and traceroute artifacts.
- * One alternative is to use a simplified form of tomography at the AS-level; M-Lab's studies of interconnection congestion used this simplified approach.

*Assumption 1: There is no congestion internal to ASes.

*Assumption 2: The server and client ASes directly interconnected.

*Assumption 3: All router-level interconnections over which an inference is made for the AS interconnection behave similarly.

*Assumptions

Of Simplified AS-level tomography approach

Your password's strength

* Lucid dream gives you direct access to your unconscious mind and its assumptions.

The dream explorers in Inception use special totems for their reality checks.

 M-lab NDT and Paris Traceroute (PT) data: <u>https://www.measurementlab.net/</u>

 MAP-IT: Multipass Accurate Passive Inferences from Traceroute, IMC 16' <u>https://github.com/alexmarder/MAP-IT</u> Identify links across
AS boundaries

Validate peak v.s off-peak difference statistically

 Portray congestion characteristics across AS boundaries, by Visualizing congestions manifesting on performance metrics

- *Traces from all U.S. M-Lab servers to clients in 12 major U.S. ISPs listed in the Measuring Broadband America report.
- *Match NDT tests traceroute from the server to that same client within a 10-minute window. Even with this wide window
 - * May 2015 allowed us to match only 77% (572,564 out of 743,780 NDT tests) from clients to M- Lab servers (with both endpoints in the U.S.).
 - *We found that in March 2017, we were able to match about the same fraction, 76% of NDT tests (4,689,239 out of 6,185,394) from U.S. M-Lab servers to U.S. clients.

*Step 1: Associate NPT with Traceroute

- * In a transition between ASes A and B, the interdomain link interfaces could be numbered out of either A or B's address space.
- * Third party addresses that appear in traceroute that may confuse the identification of AS boundaries.
- * Mistakes due to low visibility of certain interfaces in traceroute paths.
- *90% accuracy on the datasets tested.

*Address link inference challenges: MAP-IT algorithm

- *May 2015, 894,408 interface adjacencies
- *CAIDA's prefix-AS mapping derived from BGP routing tables from May 1-5, 2015, CAIDA's AS-Organization mapping from July 2015
- *IXP prefixes obtained from peeringDB and PCH as input to MAP-IT.
- *Sibling ASes as the same AS hop using information from CAIDA's AS-to- Organization dataset

*Step 2: Apply MAPIT to infer interconnection links

1 hop I 2 hops 2+ hops 1.2 114k 85k 59k 54k 38k 0.3k 1k 6k 17k 7k 4k 1 Fraction of tests 0.8 0.6 0.4 0.2 Verison Charter Concast 0 Rronier Windstream Mediacom MC Cablevision Cot

*Reality check^{ISP}1: Direct connection between server AS and client AS ? *Care must be taken to ensure that the server and client AS are directly connected, using traceroutes and a technique to identify AS boundaries in traceroutes

*What we learned from 1st reality check?

* Does aggregating tests across multiple links ok?

* Aggregating tests across links is intuitively problematic if those links are in different geographical regions, as they could vary widely in terms of diurnal throughput patterns.

* The M-Lab service uses proximity-based server selection to try to ensure a client performs its measurement to the geographically closest M- Lab server. -how WELL it is doing?

*Diversity of interconnection to access providers

Client ISP (ASN)	# Links	# NDT tests per link
Comcast (AS7922)	2	1763,8
Comcast (AS7725)	1	1640
Comcast (AS22909)	1	1135
AT&T (AS7018)	14	2402,817,683,216,136
		88,25,21,19,19,18,8,2,1
Verizon (AS701)	7	536,61,51,41,20,1,1
Verizon (AS6167)	2	3,3
Cox (AS22773)	40	total 816, max 376
Frontier (AS5650)	1	108
Centurylink (AS209)	4	382,38,17,1

Inter-domain links to top U.S. ISPs seen by M-Lab server atl01 (Level 3) in Atlanta (May 2015) *Aggregating NDT throughput measurement results at an AS granularity

* Masks the fact that different measurements could cross different IP-level links

* Sometimes in different geographical regions that may have vastly different performance characteristics.

*What we learned from 2nd Reality check?

*Portray Link Characteristics: Throughput - Link A of Verizon 701- Tata

download_speed

HIGH 62.8 (44.92 - 289.66 mb
LOW 4.6 (0.05 - 15.57 mbps)
MEDIUM 26.6 (15.67 - 44.48 n

Speed in hour bin between verizon 701 206.82.141.134 and Tata (6453) .pdf

Packet_loss in hourly bin between verizon 701 206.82.141.134 and Tata (6453) .pdf

*Portray Link Characteristics: Loss- Link A of Verizon 701- Tata (6453)

Congestions in hourly bin between verizon 701 206.82.141.134 and Tata (6453) .pdf

*Portray Link Characteristics: Congestions: Link A of Verizon 701- Tata

*Portray Link Characteristics: Throughput - Link B of Verizon 701- Tata

Speed in hour bin between verizon 701 64.86.252.98 and Tata (6453) .pdf

*Portray Link Characteristics: Loss - Link B of Verizon 701- Tata (6453)

Congestions in hourly bin between verizon 701 64.86.252.98 and Tata (6453) .pdf

* Portray Link Characteristics: Congestions- Link B of Yerizon 701- Tata

*Portrayals of Two links belong to same owners do show different Characteristics

* Aims: Inferring inter-connection point congestions

*Addressing Challenge 1

*Build Fine-grained network tomography techniques

* Reality Check 1: Tests samples are not always represent the case when server and client AS are directly connected

* Reality Check 2: Two links belong to same owners do show different congestion Characteristics

*Recap: This Talk

*Propose:

* De-aggregating AS level to inter-domain router-level link granularity

* Portray router-level link congestion events and signatures

ANY QUESTIONP

NO HARD OUESTION PLEASE Not really.. You have free will to ask whatever you want

7 & 8 September 2017, The Langham, Melbourne.

May or may not have answer to. Let's see 🙂