





# **Defending Olympus**

Mitigating a Sustained 540gb/sec DDoS Attack Campaign

Tony Scheid <tscheid@arbor.net> Senior Consulting Engineer

- Considerable political turmoil in Brazil over the last 18 months
- DDoS attacks against organizations perceived to be supporting one faction or another
- LizardStresser IoT botnet variant joined the fray in late March/early April 2016 – immediately began launching DNS, ntp, SSDP reflection/amplification attacks, layer-3/-4 and layer-7 attacks (Slowloris, etc.)
- Layer-7 attacks also pushed through Tor anonymizer network

- Attack volumes reached 200gb/sec+ in the run-up to the Olympics
- Several of the same organizations targeted (we think) due to political turmoil also affiliated with the Rio Olympics in various ways
- Attackers doubled down during the Olympics!
- Olympics had a significant impact on Internet traffic patterns ingressing/egressing/traversing
   Brazilian networks, even without the large-scale
   DDoS attacks

## **Total Traffic – City of Rio de Janeiro**



Page 4

#### **Total Netflix - Brazil**

The picture can't



## **Total Traffic – Brazil (Internal)**



## **Total Traffic Brazil – Opening Ceremony**



~20% traffic decrease during the Opening Ceremony

#### **Content Providers x Rio**

The picture can't b



~250% traffic increase during the Games

# **Google x Rio**

The picture can't be



## **Netflix x Rio**



Traffic Pattern Changed due visitor country timezone

## **Facebook x International Servers**



# **DDoS Attacks During the Games**

8 The picture can'

| Coordinated<br>Campaigns | <ul> <li>Anonymous, LizardSquad, PoodleCorp</li> <li>Crafted tools using Javascript and ToR network</li> <li>Social Media to recruit participants</li> </ul>                                                       |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Application<br>Attacks   | <ul> <li>Slowloris – HTTP Slow request</li> <li>Ack-Psh Flood</li> <li>Http-Get requests</li> </ul>                                                                                                                |
| Volumetric<br>Attacks    | <ul> <li>+ 200gb/sec average attacks – UDP reflection/amplification</li> <li>540gb/sec sustained peak attack</li> </ul>                                                                                            |
| Techniques Used          | <ul> <li>GRE Encapsulated Attacks (bypass ACL/Filters)</li> <li>ACK-Flood</li> <li>UDP reflection/amplification methods – UDP/80, UDP/443, UDP/179</li> <li>ICMP echo request – good old ping-flooding!</li> </ul> |

# **Rio 2016 – Hacking Campaign**



#### Anonymous Brasil

Agora você também pode nos aj os passos abaixo e bem vindo a

Esse programa foi desenvolvido sistema windows, lembrando qu necessário o uso de vpn, pois já a rede tor.

Tutorial:

#### 1 - Acesse

https://www.torproject.org/dist/1 6.0.2/torbrowser-install-6.0.2\_p1 instale o navegador TOR

2 - Acesse

http://www.megafileupload.com ympddos.rar e baixe o arquivo opolympddos.rar (link atualizado 3 - Execute o TOR Browser e ag mensagem de que ele está ativo 4 - Abra o arquivo opolympddos

4 - Abra o arquivo opolympddos depois abra ddos.exe

5 - Clique nos botões com o endereço do site para "Atacar". Uma janela do CMD será

mensagem de que ele está ativo. 4 - Abra o arquivo opolympddos.rar, e depois abra ddos.exe

5 - Clique nos botões com o endereço do site para "Atacar". Uma janela do CMD será aberta.

6 - Quanto mais vezes clicar no botão, mais janelas de ataque serão abertas.
7 - Divirta-se indo jantar/viajar/trabalhar enquanto seu computador faz todo trabalho de forma anônima e segura.



'age 13

Anonymous Brasil retweetou
Anonymous Center @AnonymousCenter - 39 min

Anonymous DpOlympicHacking ideo: youtu.be/KU1Z5T-vFE4 et The Games Begin. astebin: Pastebin.com/WTN6J1Qh

THE COST OF FIFA WORLD CUP IS BEING PAID...

...AND THEY ALREADY WANT US TO PAY THE NEXT BILL.





# **Telnet Traffic – IoT botnet growing**

The picture can't be



Max

#### **Telnet Traffic by Country – Matches Attack SRC**

The picture can't be



Max

| APPLICATION | COUNTRY            | IN          | OUT         | TOTAL (IN + OUT) |
|-------------|--------------------|-------------|-------------|------------------|
| X telnet    | Korea, Republic of | 671.93 Mbps | 23.74 Mbps  | 695.67 Mbps      |
| X telnet    | United States      | 24.14 Mbps  | 160.09 Mbps | 184.22 Mbps      |
| X telnet    | China              | 23.36 Mbps  | 52.95 Mbps  | 76.31 Mbps       |
| X telnet    | Japan              | 29.27 Mbps  | 32.55 Mbps  | 61.82 Mbps       |
| X telnet    | Brazil             | 14.40 Mbps  | 19.34 Mbps  | 33.74 Mbps       |

#### **Captured Netis Router Bot Installation (IoT Botnet Participant)**



#### **Observed GRE DDoS attack**

- Frame 1: 592 bytes on wire (4736 bits), 592 bytes captured (4736 bits)
- Ethernet II, Src: CiscoInc\_e5:47:09 (64:12:25:e5:47:09), Dst: ArborNet\_a0:ca:c0 (00:50:49:a0:ca:c0)
- Internet Protocol Version 4, Src: 247, Dst: 2.77
- Generic Routing Encapsulation (Transparent Ethernet bridging)
  - Flags and Version: 0x0000
     Protocol Type: Transparent Ethernet bridging (0x6558)
- Ethernet II, Src: 77:e7:b5:c8:52:6c (77:e7:b5:c8:52:6c), Dst: 92:bf:07:08:7c:a1 (92:bf:07:08:7c:a1)
- Internet Protocol Version 4, Src: 17, Dst: .28
- User Datagram Protocol, Src Port: 34109 (34109), Dst Port: 17880 (17880)
- Data (512 bytes)
  - Data: b9709c7211c10b6d31cd5f4264e108297e15d990f239ef24...
  - [Length: 512]

| 0000 | 00 | 50 | 49        | a0 | са | с0        | 64 | 12 | 25         | e5         | 47 | 09 | <b>0</b> 8 | 00        | 45         | 00        | .PId. %.GE. |
|------|----|----|-----------|----|----|-----------|----|----|------------|------------|----|----|------------|-----------|------------|-----------|-------------|
| 0010 | 02 | 42 | 56        | 86 | 40 | 00        | 30 | 2f | c4         | 01         | b7 | fc | 14         | f7        | <b>c8</b>  | c4        | .BV.@.0/    |
| 0020 | 98 | 4d | 00        | 00 | 65 | 58        | 92 | bf | 07         | <b>0</b> 8 | 7c | a1 | 77         | e7        | b5         | <b>c8</b> | .MeX .w     |
| 0030 | 52 | 6c | <b>08</b> | 00 | 45 | 00        | 02 | 1c | 91         | 7d         | 40 | 00 | 40         | 11        | 45         | 35        | RlE}@.@.E5  |
| 0040 | 40 | 6e | 7f        | 11 | 6c | 83        | 36 | 1c | 85         | 3d         | 45 | d8 | 02         | <b>08</b> | 85         | 51        | @nl.6=EQ    |
| 0050 | b9 | 70 | 9c        | 72 | 11 | c1        | 0b | 6d | 31         | cd         | 5f | 42 | 64         | e1        | <b>0</b> 8 | 29        | .p.rm 1Bd)  |
| 0060 | 7e | 15 | d9        | 90 | f2 | 39        | ef | 24 | 3d         | a6         | 46 | e6 | b0         | e9        | 37         | 40        | ~9.\$ =.F7@ |
| 0070 | ca | 3f | 6f        | 80 | 6e | 5b        | d0 | 06 | a3         | 1f         | e3 | 73 | 91         | 7e        | db         | bb        | .?o.n[s.~   |
| 0800 | ed | 9b | сс        | 29 | 9e | <b>c4</b> | 71 | 23 | dc         | 28         | 1d | 4f | 14         | 55        | bd         | b4        | )q# .(.O.U  |
| 0090 | 06 | b2 | d1        | da | bc | 85        | 6d | c3 | 7e         | 17         | 50 | 32 | 78         | 82        | 8e         | 4d        | m. ~.P2xM   |
| 00a0 | b5 | 8f | f7        | b2 | 82 | a5        | 70 | 93 | <b>8</b> a | 70         | 1c | 7b | 50         | 79        | 95         | ad        | pp.{Py      |
| 00a0 | b5 | 8f | f7        | b2 | 82 | a5        | 70 | 93 | 8a         | 70         | 1c | 7b | 50         | 79        | 95         | ad        | pp.{Py      |

#### **Observed ICMP DDoS Attack**

R The picture can't be di

| 19// 2010-00-00 02:29:2/.032103     | 4.40                   | 207               | TCHE        |                 | request | 10-001010, Seq-21233/10/ | , LLL-SI (NO TESPONSE TOUND:  | .,  |
|-------------------------------------|------------------------|-------------------|-------------|-----------------|---------|--------------------------|-------------------------------|-----|
| 1978 2016-08-06 02:29:27.855531     | .7.82                  | . 207             | ICMP        | 58 Echo (ping)  | request | id=0xface, seq=56593/457 | , ttl=125 (no response found  | 1!) |
| 1979 2016-08-06 02:29:27.862470     | 26                     | . 207             | ICMP        | 58 Echo (ping)  | request | id=0xface, seq=56594/482 | ), ttl=121 (no response found | (!! |
| 1980 2016-08-06 02:29:27.879542     | 10                     | . 207             | ICMP        | 58 Echo (ping)  | request | id=0xface, seq=49688/633 | 3, ttl=119 (no response found | 1i) |
| 1981 2016-08-06 02:29:27.882637     | 178                    | . 207             | ICMP        | 58 Echo (ping)  | request | id=0xface, seq=49689/659 | , ttl=123 (no response found  | 11) |
| Frame 1: 102 bytes on wire (816 b   | its), 102 bytes captur | red (816 bits)    |             |                 |         |                          |                               |     |
| Ethernet II, Src: CiscoInc_7d:b1:   | ee (00:1f:ca:7d:b1:ee) | , Dst: Silicom_0e | :91:c0 (00: | e0:ed:0e:91:c0) |         |                          |                               |     |
| ▶ 802.10 Virtual LAN, PRI: 0, CFI:  | 0, ID: 198             |                   |             |                 |         |                          |                               |     |
| ▶ Internet Protocol Version 4, Src: | .2, Dst:               | 207               |             |                 |         |                          |                               |     |
| Internet Control Message Protocol   |                        |                   |             |                 |         |                          |                               |     |
| Type: 8 (Echo (ping) request)       |                        |                   |             |                 |         |                          |                               |     |
| Code: 0                             |                        |                   |             |                 |         |                          |                               |     |
| Checksum: 0x1ac9 [correct]          |                        |                   |             |                 |         |                          |                               |     |
| Identifier (BE): 63552 (0xf840)     | 1                      |                   |             |                 |         |                          |                               |     |
| Identifier (LE): 16632 (0x40f8)     | 1                      |                   |             |                 |         |                          |                               |     |
| Sequence number (BE): 2 (0x0002     | 2)                     |                   |             |                 |         |                          |                               |     |
| Sequence number (LE): 512 (0x02     | 200)                   |                   |             |                 |         |                          |                               |     |
| ▶ [No response seen]                |                        |                   |             |                 |         |                          |                               |     |
| Timestamp from icmp data: Aug       | 6, 2016 02:35:22.3364  | 37000 BRT         |             |                 |         |                          |                               |     |
| [Timestamp from icmp data (rela     | ative): -373.813446000 | seconds]          |             |                 |         |                          |                               |     |
| Data (48 bytes)                     |                        |                   |             |                 |         |                          |                               |     |

# **Observed Slowloris – HTTP slow request**

The picture can't be d

| 123 2016-08-06 02:07:50.460324<br>124 2016-08-06 02:07:50.509434<br>125 2016-08-06 02:07:50.512161<br>126 2016-08-06 02:07:50.531826                                                                                                    | 163<br>163<br>163<br>163                                                                  | 207 H<br>207 H<br>207 H<br>207 H                             | TTP         62           TTP         62           TTP         62           TTP         62           TTP         62 | Continuation<br>Continuation<br>Continuation<br>Continuation |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| <ul> <li>Frame 123: 62 bytes on wire (496 bits</li> <li>Ethernet II, Src: CiscoInc_e5:47:07 (</li> <li>Internet Protocol Version 4, Src:</li> <li>Transmission Control Protocol, Src Po</li> <li>Typertext Transfer Protocol</li> </ul> | ), 62 bytes captured (4<br>64:12:25:e5:47:07), Ds1<br>163, Dst:<br>rt: 57375 (57375), Dst | 496 bits)<br>t: ArborNet_a0:ca:<br>.207<br>Port: 80 (80), Se | a0 (00:50:49<br>q: 166760094                                                                                       | :a0:ca:a0)<br>7, Ack: 1268671344, Len: 8                     |
| X-a: b\r\n                                                                                                                                                                                                                              |                                                                                           |                                                              |                                                                                                                    |                                                              |
|                                                                                                                                                                                                                                         |                                                                                           |                                                              | E<br>X                                                                                                             | nd-less http header<br>-a: b                                 |

#### **Attack Volume**

The picture



#### **DDoS Timeline – What's Next?**

R The picture can't be di



#### **Preparation, Coordination, Communication = Mitigation Success**

- NetFlow telemetry used for detection/classification/traceback
- ACLs used to enforce reasonable network access policies at upstream overlay cloud MSSP
- Intelligent DDoS mitigation systems (IDMSes) used to handle in-profile attacks, application-layer attacks at both MSSP and transit ISPs
- Careful provisioning, timely communications about adds/moves/changes key to maintaining availability over the course of the attack campaign

#### **Preparation, Coordination, Communication = Mitigation Success**

- Constant, co-ordinated communications between all levels
  - Targeted organizations
  - Upstream transit ISPs
  - Cloud MSSP Mitigation Provider
- Well-rehearsed and -executed plan, lessons learned from ongoing attacks applied when volumes increased to 540gb/sec, changing attack vectors successfully detected/classified/mitigated, ongoing attention to service/app/content availability and responsiveness.
- The moral of the story—with preparation, planning, and attention to detail, defenders *can* mitigate the largest, most complex DDoS attacks!





# **Thank You!**



# **Defending Olympus**

Mitigating a Sustained 540gb/sec DDoS Attack Campaign

Tony Scheid <tscheid@arbor.net> Senior Consulting Engineer