Untrusting the network

Aijay Adams Jose Leitao Production Network Engineers facebook

facebook

as of June 2016

1.57 billion mobile monthly active users/

1.71 billion monthly active users

1.13 billion daily active users on average

1.03 billion mobile daily active users on average

facebook

as of June 2016

1.57 billion mobile monthly active users

1.71 billion monthly active users

1.03 billion mobile daily active users on average

Approximately 84.5% of our daily active users are outside the US and Canada.

Data Center Network

Wide ECMP, many paths!

Backbone Network

MPLS Backbone

Auto Bandwidth

<u>ECMP over MPLS Tunnels</u>

Counters and Logs

Coworkers

Coworkers

Investigate

#network_engineer

Ping all the things!

Run pingers on some machines Run responders on all machines Collect and analyse data

Evolution

Run /bin/ping from a python agent

Raw Sockets, Fast TCP Probes

Raw Sockets, Fast ICMP Probes

UDP Probes and Responder

UDP Probes and Responder + Fast ICMP Probes

Ping Pong

Pingers

Send UDP and ICMP probes to target list

- Timestamp & Log results
- High ping-rate (up to 1Mpps)
- Set DSCP marking

Responders

- Receive/Reply to probe
- Timestamp
- Low load: thousands of pps
- Reflect DSCP value back

Why UDP?

- No TCP RST packets
- Efficient ECMP coverage
- Extensible

Probe Structure

Signature

Send Time

Receive Time

Response Time

Traffic Class

NetNORAD

Ping and Process Data

github.com/facebook/UdpPinger

Challenges

Tens of thousands of targets

Hundreds of pingers

Lots of data to process

We really do not care about each host...

The unit of interest is cluster health

Pinging inside clusters

- Detect issues with rack switches
- Dedicated pingers per cluster
- Probe ALL machines in cluster
- Store time-series per host/rack
- Lags real-time by 2 minutes

Pinging the clusters

Alarming on Loss

- Build packet loss time-series
- Track percentiles
- Time to detect loss? 20 Seconds

Finding the problem

Finding the problem

Pinger A

Finding the problem

Each layer of the network contains many devices ...and many more links

1,7 km Moslifjell (1) fbtracert Isolating Network Faults github.com/facebook/fbtracert

© 2016 Facebook | Dublin | Credits: Photo by Jose Leitao https://creativecommons.org/licenses/by/3.0/

Big Fat Fabrics

- Over 1,000 L3 Links between devices in different DCs in the SAME Region
- We know there is loss between hosts, but where?

DC Network Fault Isolation

Bad Fabric Card

Bad Link

ECMP Packet Hashing

DC Network Fault Isolation

Map The Loss for Each Request

Map The Loss for Each Request

Overlay the Loss on Network Map

Analyze the Loss

Network Symmetry
48
48

Clearer Signal

Fabric Grey Failure Detection

Conclusions

Fault isolation is actively evolving

Traceroute + probing approach is quite generic

Limited by current hardware

