
© Copyright 2016 Opengear, Inc.

1

Central Orchestration of Network
Infrastructure

NetOps meets DevOps
ken.wilson@opengear.com

www.opengear.com 2

© Copyright 2016 , Inc.

DevOps – Quick overview

Remove the barriers between the development and operation teams

Dev Ops
 Driven by goal of reducing application deployment overhead and increasing

quality
 Focused on automated deployment and configuration
 Infrastructure should be treated as code and tested the same way

Context - Opengear

Build management appliances for data-centres and remote sites
 Used by Network administrators
 Primary uses

● Serial connectivity to switches/routers/firewalls
● Serial/USB connectivity to UPS/PDU
● Provision of Out-of-band access to management networks

 Some server management via Ethernet/IPMI/Serial
 Often the primary access method for configuration of network equipment

NetOps - Current Situation at our customers

 Config snippets stored in a wiki
 Manually pasted into a SSH/Telnet/Serial console

NetOps – Current Situation (cont)

Pros
 Well understood
 Config CLIs will catch syntax and some logic errors
 Basic version control with snippets stored in a Wiki

Cons
 Everything else

NetOps – Current Situation (cont)

Hard to get a view of how your network is actually configured
 Architecture diagrams don’t count

Tools like RANCID help bridge that gap
 Really Awesome New Cisco Config Differ
 Configs (and hardware information) are retrieved from devices, and

stored in CVS
 Notifications on config or hardware changes

Helps solve the config backup and audit issues, but doesn’t help deployment

Orchestration Tools

Orchestration Tools – Common Concepts

Configuration is deployed centrally from a master to the nodes being
configured

Master

NodeNode

NodeNode

NodeNode

NodeNode

Configuration is defined in a domain
specific language, and consists of
lists of actions.

Orchestration Tools – Common Concepts

Action
 Install a package
 Start a service
 Copy a file
 Configure a network port
 Customisable with variables locally defined or discovered from the node

Actions are run in a defined order
Actions are idempotent
Action definitions can also be used for audit

Orchestration Tools – Common Concepts

Variables
Can be defined in multiple places

 Locally in the action definition
 Locally in the node definitions
 Dynamically by querying the remote node

Used in the action definition, or for populating templated configuration files

Orchestration Tools – Common Concepts

Version Control
Actions and Node configuration should be version controlled

 Usually left to the implementer (apart from Chef)
 Allows revision tracking of infrastructure configuration
 Makes it easier to integrate a review process into network config

operations
 Easier roll-back to known good configurations if required

Puppet

 Maintained by Puppet Labs – initial release was in 2005
 Java master process
 Ruby agent that runs on the node
 Communications over certificate secured SSL TCP connection

 Agent generates the certs, and requires the master to authorise

Nomenclature
 Action = Resource
 List of Actions (and logic for selecting nodes) = Manifest
 Variables = Facts

Puppet – Network Device Support

 Cisco NXOS/IOS-XR
 Arista EOS
 Huawei CloudEngine
 Cumulus Linux
 Juniper JunOS
 Mellanox

Chef

 Maintained by Chef (formerly OpsCode) – initial release was around 2008
 Erlang/Ruby master process
 Ruby agent that runs on the node
 Communicates via TCP connections to a variety of services
 Authentication via certificates

Nomenclature
 Action = Recipe
 List of Actions = Cookbook
 Variables = Attributes
 Mapping of Cookbooks to Nodes = Run List

Chef – Network Device Support

 Cisco NXOS/IOS-XR
 Arista EOS
 Cumulus Linux
 Juniper JunOS

Ansible

 Maintained by RedHat – initial release was in 2012
 Python master process, “Agent-less”
 Master process pushes agent code to the node during operations

● Requires Python to run
 SSH is used as connection mechanism
 Authentication is via SSH shared keys

Nomenclature
 Action = Play
 List of Actions = Playbook
 Variables = Facts
 Mapping of Plays to Nodes = Defined in the Playbook

Ansible – Network Device Support

 Cisco NXOS/IOS-XR
 Arista EOS
 Cumulus Linux
 Juniper JunOS

Commonalities in Bindings

 Multi-vendor is a nice idea, but quite restricted
 Puppet and Chef have netdev – focused on L1/L2 Switch configuration

● Primarily pushed by Juniper, adding support for others (Cisco, Arista,
Mellanox)

 Building blocks are
● netdev_interface – physical interface abstraction
● netdev_l2_interface – used for creating/deleting layer 2 interfaces
● netdev_lag – used for creating/deleting link aggregation groups
● netdev_vlan – used for creating/deleting VLANs

 Any more complexity means vendor specific bindings

Example - Puppet
node "jd.mycorp.com" {
 netdev_device { $hostname: }

 netdev_vlan { "Pink":
 vlan_id => 105,
 description => "This is a pink vlan",
 }

 netdev_vlan { "Green":
 vlan_id => 101,
 }

 netdev_vlan { "Red":
 vlan_id => 103,
 description => "This is the native vlan",
 }

 netdev_l2_interface { 'ge-0/0/19':
 untagged_vlan => Red,
 }

 netdev_l2_interface { 'ge-0/0/20':
 description => "connected to R1-central",
 untagged_vlan => Red,
 tagged_vlans => [Green, Pink],
 }

Filename “netdev_access_switch/vlan_create.rb”
netdev_vlan “Pink” do

vlan_id 105
description “This is a pink vlan”
action :create

end
netdev_vlan “Green” do

vlan_id 101
action :create

end
netdev_vlan “Red” do

vlan_id 103
description “This is the native vlan”
action :create

end
netdev_l2_interface “ge-0/0/19” do

untagged_vlan “Red”
vlan_tagging false
action :create

end
netdev_l2_interface “ge-0/0/20” do

description “connected to R1-central”
untagged_vlan “Red”
tagged_vlans [“Green”, “Pink”]
vlan_tagging true
action :create

end

Run List
{
 "name": "access_switch_jd_mycorp_com",
 "chef_environment": "_default",
 "normal": {
 },
 "run_list": [

"recipe[netdev_access_switch::vlan_create]"
]
}

Example - Chef

Barriers to entry

NetOps
● Ain’t broke, why fix
● Vendor support

● Closed ecosystem is better for them
● In-house expertise

● $$CONSULTANTS$$

Vendors
● Hard to pick the winning horse
● Can be a challenge to embed the agents
● Resource constraints
● Lock in

Futures

● Systems/Vendors will provide more consistent interfaces
● Netdev is a start

● DevOps will become the norm
● Time to skill up :)

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

