

Model Driven Telemetry -Foundation for Big Data Analytics

Rada Stanic Principal Systems Engineer, Cisco

Agenda

- Current Challenges
- Model Driven Approach
- Key Lessons Learnt
- Collectors
- Conclusion

Current Challenges

It's All About Operations

Precedent is well established

"Today, our time series metric ingestion service handles more than 2.8 billion write requests per minute, stores 4.5 petabytes of time series data, and handles 25,000 query requests per minute." https://blog.twitter.com/2016/observability-at-twitter-technical-overview-part-i

• Network monitoring has work to do.

Why Network Visibility Is Hard

Too Slow

Incomplete

Network-Specific

Hard to Operationalize

What Happens When You Push SNMP Too Hard

- 10 second poll
- 3 pollers
- 30 minute measurement intervals

- 288 100Gig E Interfaces (Line Rate)
- SNMP: IF-MIB (query by row)

Why This Matters Now

Real-Time Use Cases

- Network Health
- Troubleshooting / Remediation
- SLAs, Performance Tuning
- Capacity Planning
- Security

Trends

- Centralized / Software-defined
- Speed
- Scale

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Capabilities

Analytics Ready...or Not

Not Ready

- Send unstructured text
- Invent a new stack from scratch
- Make it networking-specific
- Support minimal programming languages and toolchains

Traditional Networking Approach

Ready

- Structured data only
- Re-use common encodings, RPCs, transports
- Learn/borrow from other domains
- Support many programming languages and toolchains

IT / Cloud / Web

Source: Google @ Bay Area OpenDaylight Meetup 06/16

Streaming telemetry - moving forward from SNMP

- stream data continuously -- with incremental updates
- telemetry sent based on subscriptions
- observe network state through a timeseries data stream
- device data follows a common model
- efficient, secure transport protocols
 (gRPC)
- Aim to deprecate SNMP in our network by 2017

co and/or its affiliates. All rights reserved. Cisco Confidential

Model Driven Approach

Data Model Driven Management: Architectural Pillars

Network Programmability	 Data accessible via published model driven interfaces or APIs Machine friendly (CLI is not) Enables automation @ scale 	
Visibility & Telemetry	 Operational Data, Deep analytical hooks Policy-based, flexible, Push Model, more granular, greater scalability Model driven data structures 	
Application Hosting	 Operators may run their own or 3rd party off the shelf applications built with Linux tool chains Run custom applications built with vendor provided SDK Can be run natively co-located with router OS (or) inside an LXC or Docker container 	

Model-Driven Programmability Stack

YANG Data Models

- Yang Modeling language (initially for NETCONF)
- Model structures data (config and operational) as a tree
- .yang files are self-documented and ship with devices
- Native models provide full feature coverage
- OpenConfig and IETF models are mapped to native models
- Benefits: <u>automation</u>, <u>automation</u>, <u>automation</u>
 Machine friendly tree structure with key:value pairings (vs. CLI grammar)
 - · Auto-generation of code
 - Support for programming language bindings

Yang Models Are Created By Many

https://github.com/openconfig/public

http://www.openconfig.net/

Config Model Example

Encoding Types – What They Look Like

<person> <name>Rada</name> </person> JSON and GPB "self-describing"

{"name":"Rada"}

GPB (Compact) 0a (String) 05 (Length) Rada

35 Bytes

16 Bytes

7 Bytes

YANG Development Kit (YDK)

17

Lessons Learnt

Telemetry Means Different Things to Different People

It's Not Hard to Beat SNMP

- 10 second poll / push
- 3 pollers / telemetry receivers
- 30 minute measurement intervals
- 288 100Gig E Interfaces (Line Rate)
- SNMP: IF-MIB (query by row)

You Don't Know What You Love Until It's Gone

• Well-Known Name:

OID: 1.3.6.1.2.1.2.2.1.10.4 MIB: IF-MIB

Object: ifInOctets

In reality, not enough of these

• Not-So-Well-Known Name:

"RootOper.InfraStatistics.Interface({'InterfaceName' : 'GigabitEthernet0/0/0/0'}).GenericCounters",

{'BytesReceived': 443140326}

Data Models are Good for Telemetry

· Follow the industry standard: YANG

Vendor-Specific	Vendor-Neutral	
module: Cisco-IOS-XR-infra-statsd-oper +ro infra-statistics +ro interfaces +ro interface* [interface-name] +ro latest +ro generic-counters +ro generic-counters +ro packets-received? uint64 +ro bytes-received? uint64 +ro packets-sent? uint64 +ro bytes-sent? uint64 +ro bytes-sent? uint64	module: openconfig-interfaces +rw interfaces +rw interface* [name] +ro counters +ro in-octets? yang:counter64 +ro in-unicast-pkts? yang:counter64 +ro in-broadcast-pkts? yang:counter64 +ro in-multicast-pkts? yang:counter64 +ro in-discards? yang:counter64 <snip></snip>	

Benefits of YANG: Order by system, pull containers, readable, extensible, hierarchical, reusable, versioning, modularity, etc

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidentia

Some Models Are Harder Than Others

- Less "Impedance Mismatch" Than Config
 - Diminished Many to One Problem
 - Same underlying objects, different paths
 - Mapping oper data is mostly stateless
- Implications for Performance
 - Scatter-gather problem
 - Model mapping can be resource intensive -> optimize software architecture for high speed export
- Model Development Cycle May Lag

Filtering Is A Balancing Act

- Massive Amounts of Data
 - Bulk Collection is Efficient
 - Bulk Processing/Export Not So Much
 - Compression (Lossless) is Good
- On-Box Filtering Loses Data
 - Can't Change Your Mind About What's
 Important Later
 - Can't Scale Out Embedded Processing
- Options
 - Balance Filtering Between Network and Collector
 - Don't Rely on Periodic Push for "On-Change" Data (e.g. RIB events)

Self-Describing Data Has Pros and Cons

GPB – "compact"
1: GigabitEthernet0/0/0/0
50: 449825
51: 41624083
52: 360333
53: 29699362
54: 91299
<snip></snip>

2X faster Operationally more complex (but not relative to SNMP!) JSON/GPBKV – "self-describing" {InterfaceName: GigabitEthernet0/0/0/0 GenericCounters { PacketsSent: 449825 BytesSent: 41624083 PacketsReceived: 360333 BytesReceived: 29699362 MulticastPacketsReceived: 91299 <snip>

3X larger Native models: still need heuristics for key names

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Transports Have Trade-offs

- UDP can't fragment, packets might get lost, insecure, fast
- TCP can fragment, guaranteed delivery, insecure, vulnerable to loss
- Two motivations for gRPC
 - Unification of management
 protocol
 - Secure, two-way streaming

Data Model	Encoding	Transport	Score
	Binary	UDP	100%
Notivo		TCP	88%
Nalive	Self-		42%
	describing	gRPC	38%

Time to Think About Analytics Pipeline & Platform

Diversity Is In the Eye of Beholder

No Single Metric Describes the Network

• Application + Networking Data ?

Collectors

A Very Basic Analytics Platform Architecture

Visualize, Alert, Automate

Index, Search, Store

Ingest, Aggregate, Normalize

The Elastic Stack: A Popular OpenSource Stack

- Formerly known as "ELK"
- Commerical/Cloud via elastic.co
- Lucene based (inverted index)
- Data stored as documents
- Full text search and log management
- <u>https://github.com/cisco/bigmuddy-network-</u> telemetry-stacks/tree/master/stack_elk

its attiliates. All rights reserved. Cisco Confidential

A Large, Fast-Moving Landscape

Pipeline: An Open Source Collector

PNDA.IO: A More Complex Architecture

Key Takeaways

A Big Data Platform Is In Your Future

Speed & Scale Require Visibility

.us-XR-Intra-.a-statistics -ro interface* [interface-name, +-ro latest +-ro generic-counters +-ro packets-received? +-ro pytes-received? +-ro pytes-sent? +-ro puticast-packets-- broadcast-paci

Data Models Are Your Friends

It's Not Hard to Beat SNMP ılıılı cısco