
© Copyright 2016 Opengear, Inc.

1

Central Orchestration of Network
Infrastructure

NetOps meets DevOps
ken.wilson@opengear.com

www.opengear.com 2

© Copyright 2016 , Inc.

DevOps – Quick overview

Remove the barriers between the development and operation teams

Dev Ops
 Driven by goal of reducing application deployment overhead and increasing

quality
 Focused on automated deployment and configuration
 Infrastructure should be treated as code and tested the same way

Context - Opengear

Build management appliances for data-centres and remote sites
 Used by Network administrators
 Primary uses

● Serial connectivity to switches/routers/firewalls
● Serial/USB connectivity to UPS/PDU
● Provision of Out-of-band access to management networks

 Some server management via Ethernet/IPMI/Serial
 Often the primary access method for configuration of network equipment

NetOps - Current Situation at our customers

 Config snippets stored in a wiki
 Manually pasted into a SSH/Telnet/Serial console

NetOps – Current Situation (cont)

Pros
 Well understood
 Config CLIs will catch syntax and some logic errors
 Basic version control with snippets stored in a Wiki

Cons
 Everything else

NetOps – Current Situation (cont)

Hard to get a view of how your network is actually configured
 Architecture diagrams don’t count

Tools like RANCID help bridge that gap
 Really Awesome New Cisco Config Differ
 Configs (and hardware information) are retrieved from devices, and

stored in CVS
 Notifications on config or hardware changes

Helps solve the config backup and audit issues, but doesn’t help deployment

Orchestration Tools

Orchestration Tools – Common Concepts

Configuration is deployed centrally from a master to the nodes being
configured

Master

NodeNode

NodeNode

NodeNode

NodeNode

Configuration is defined in a domain
specific language, and consists of
lists of actions.

Orchestration Tools – Common Concepts

Action
 Install a package
 Start a service
 Copy a file
 Configure a network port
 Customisable with variables locally defined or discovered from the node

Actions are run in a defined order
Actions are idempotent
Action definitions can also be used for audit

Orchestration Tools – Common Concepts

Variables
Can be defined in multiple places

 Locally in the action definition
 Locally in the node definitions
 Dynamically by querying the remote node

Used in the action definition, or for populating templated configuration files

Orchestration Tools – Common Concepts

Version Control
Actions and Node configuration should be version controlled

 Usually left to the implementer (apart from Chef)
 Allows revision tracking of infrastructure configuration
 Makes it easier to integrate a review process into network config

operations
 Easier roll-back to known good configurations if required

Puppet

 Maintained by Puppet Labs – initial release was in 2005
 Java master process
 Ruby agent that runs on the node
 Communications over certificate secured SSL TCP connection

 Agent generates the certs, and requires the master to authorise

Nomenclature
 Action = Resource
 List of Actions (and logic for selecting nodes) = Manifest
 Variables = Facts

Puppet – Network Device Support

 Cisco NXOS/IOS-XR
 Arista EOS
 Huawei CloudEngine
 Cumulus Linux
 Juniper JunOS
 Mellanox

Chef

 Maintained by Chef (formerly OpsCode) – initial release was around 2008
 Erlang/Ruby master process
 Ruby agent that runs on the node
 Communicates via TCP connections to a variety of services
 Authentication via certificates

Nomenclature
 Action = Recipe
 List of Actions = Cookbook
 Variables = Attributes
 Mapping of Cookbooks to Nodes = Run List

Chef – Network Device Support

 Cisco NXOS/IOS-XR
 Arista EOS
 Cumulus Linux
 Juniper JunOS

Ansible

 Maintained by RedHat – initial release was in 2012
 Python master process, “Agent-less”
 Master process pushes agent code to the node during operations

● Requires Python to run
 SSH is used as connection mechanism
 Authentication is via SSH shared keys

Nomenclature
 Action = Play
 List of Actions = Playbook
 Variables = Facts
 Mapping of Plays to Nodes = Defined in the Playbook

Ansible – Network Device Support

 Cisco NXOS/IOS-XR
 Arista EOS
 Cumulus Linux
 Juniper JunOS

Commonalities in Bindings

 Multi-vendor is a nice idea, but quite restricted
 Puppet and Chef have netdev – focused on L1/L2 Switch configuration

● Primarily pushed by Juniper, adding support for others (Cisco, Arista,
Mellanox)

 Building blocks are
● netdev_interface – physical interface abstraction
● netdev_l2_interface – used for creating/deleting layer 2 interfaces
● netdev_lag – used for creating/deleting link aggregation groups
● netdev_vlan – used for creating/deleting VLANs

 Any more complexity means vendor specific bindings

Example - Puppet
node "jd.mycorp.com" {
 netdev_device { $hostname: }

 netdev_vlan { "Pink":
 vlan_id => 105,
 description => "This is a pink vlan",
 }

 netdev_vlan { "Green":
 vlan_id => 101,
 }

 netdev_vlan { "Red":
 vlan_id => 103,
 description => "This is the native vlan",
 }

 netdev_l2_interface { 'ge-0/0/19':
 untagged_vlan => Red,
 }

 netdev_l2_interface { 'ge-0/0/20':
 description => "connected to R1-central",
 untagged_vlan => Red,
 tagged_vlans => [Green, Pink],
 }

Filename “netdev_access_switch/vlan_create.rb”
netdev_vlan “Pink” do

vlan_id 105
description “This is a pink vlan”
action :create

end
netdev_vlan “Green” do

vlan_id 101
action :create

end
netdev_vlan “Red” do

vlan_id 103
description “This is the native vlan”
action :create

end
netdev_l2_interface “ge-0/0/19” do

untagged_vlan “Red”
vlan_tagging false
action :create

end
netdev_l2_interface “ge-0/0/20” do

description “connected to R1-central”
untagged_vlan “Red”
tagged_vlans [“Green”, “Pink”]
vlan_tagging true
action :create

end

Run List
{
 "name": "access_switch_jd_mycorp_com",
 "chef_environment": "_default",
 "normal": {
 },
 "run_list": [

"recipe[netdev_access_switch::vlan_create]"
]
}

Example - Chef

Barriers to entry

NetOps
● Ain’t broke, why fix
● Vendor support

● Closed ecosystem is better for them
● In-house expertise

● $$CONSULTANTS$$

Vendors
● Hard to pick the winning horse
● Can be a challenge to embed the agents
● Resource constraints
● Lock in

Futures

● Systems/Vendors will provide more consistent interfaces
● Netdev is a start

● DevOps will become the norm
● Time to skill up :)

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

