SWIN BUR * NE *

SWINBURNE UNIVERSITY OF TECHNOLOGY

Using a lack of source address filtering to create 'quota-free' tunnels between collaborators

Warren Harrop

wharrop@swin.edu.au

Centre for Advanced Internet Architectures (CAIA) Swinburne University of Technology

Outline

2

- Brief update: Greynets (AusNOG 2008)
- Details of the issue
 - □ Variants
- Mitigation

□ An argument for implementing BCP38 (src address filtering)

Conclusion

Greynets - AusNOG 2008

Passive listener (darknet) hosts scattered amongst normal (lit) hosts on an edge network

 $\hfill\square$ When scans occur they inevitably scan a greynet host

- Originally only implemented using VLAN trunks [1]
- Since last AusNOG, further defined in RFC 6018 "IPv4 and IPv6 Greynets" (Baker, Harrop, Armitage)

□ Router assisted greynets

■ ... & a book

[1] W.Harrop, G.Armitage "Defining and Evaluating Greynets (Sparse Darknets)," *IEEE 30th Conference on Local Computer Networks (LCN 2005) Sydney, Australia, 15-17 November, 2005.*

Book

Fifty Shades Greynets of W N Harrop Based on RFC 6018

5

I hesitate to call it an "exploit"

 \Box Not an exploit for a specific device & software version

□ More: "an evil idea with some proof of concept experiments"

History

□ Max Tulyev outlines the issue in a 2004 mailing list post http://archive.cert.uni-stuttgart.de/bugtraq/2004/09/msg00267.html

- Three generalisations that hold true for many consumer-grade products offered by ISPs:
 - □ Usage is metered on a per-byte-transfered basis
 - □ Consumers generally have '*quota-free*' access to certain services (or IP addresses) as a 'value-add'
 - IP packets with forged source-addresses are allowed to move within and leave the network (ie. there is no BCP 38 on the network).
- We can use the last two to create quota-free tunnels between two collaborators
 - □ Using ICMP...

Creating a tunnel (within a single ISP)

7

Create an ICMP echo request packet

 \Box Place an IP packet to be tunnelled in its payload

- Forge the source address to that of your collaborator
- Set destination address to quota-free server
- Same concept for the reverse path

Creating a tunnel (between ISPs)

8

- One collaborator 'pays', other not [left]
- Each 'pays' for upstream, not for downstream [right]

Or vice-versa

Getting out of a walled-garden

9

- External collaborator host (de)-encapsulates
- Forwards packets to wider internet

- Use multiple quota-free servers in a round-robin manner so the ICMP rate of any one server does not spike
- Use the 'right' server and get free QoS

An alternative to using ICMP

- A TCP based tunnel
 - Using covert channel methodologies
- Place data in a TCP:
 - Sequence number (4 byte)
 - Time stamp (4 byte)
- The rate of these packets required to make a usable channel is quite evil though
- There might be others methods...

11

But...

NAT breaks all of this

Collaborators need a globally reachable address

 \Box And the ability to generate arbitrary packets

Testing

hping3

 \Box A nice program to enable the arbitrary generation of packets

 \Box An example for testing:

```
hping3 ${quota-free_host} -c 1 \
--data 1000 --file ${payload_file} \
-V -icmp \
```

-a \${collaborator_host}

tcpdump for ICMP on the collaborator host to see if the packet arrives

Experiments (ICMP based)

- I have confirmed this works with a number of ISPs
- But, with some it did not
- I don't want to publish exact details
- Why?
 - \Box I don't have the resources for exhaustive testing
 - □ Results would be an arbitrary name and shame
 - \Box I don't want to get in any sort of trouble
 - □ Unlikely? I've seen enough messengers get shot to play it safe
- No publicly released code for creating a tunnel

- BCP38 source address filtering
 - □ Filter early, filter often
 - \Box Helps build a better world
- Reduce the scope of 'quota-free'
 - □ Specific ports, rather than IPs (won't stop TCP based)
- Looking for unusual patterns of traffic
 - □ Many ICMP packets
 - □ Many, many hanging TCP connections
 - □ Might already trigger DDoS alarms

Is this a big problem?

16

- Most people run a NAT
- Need to generate arbitrary packets on a public IP

But the 'power-users' who can, might be a worry (eg. those who terminate their connection on a UNIX box)

But! NATs are going away. Right?

□ Could see its day in an IPv6 world?

- Will it matter when plans are > terabyte?
- Carriers using this on each other?

 \Box Left as a thought for the audience

A method to create quota-free tunnels

□ Inter- and intra-ISP

□ Escaping a walled-garden

Mitigation

 \Box A selfish argument for implementing BCP38

 $\hfill\square$ Think very carefully about what exactly is made quota-free

Works, but I'll leave it to others to work out with what networks...

