

## INTEGRATING OPTICAL NETWORKING INTO THE PACKET CORE

Tim Nagy - tnagy@juniper.net 7 September 2012



### **OPTICAL INTEGRATION IN CORE ROUTING**

For years, the optical portion of the network has been separate to – and managed separately from – the IP core

New standards and advancing technology is changing that status quo now

- Miniaturization of components
- G.698.2 standard "black link"
- Management hooks into optical/router elements
- Integration between transmission failure and IP/MPLS reroute

We will examine how this landscape is changing – but first, a quick overview of optical networking terms and functionality





## **OPTICAL DEVICES/TERMINOLOGY**



#### SIMPLE DWDM TRANSMISSION SYSTEM



Multiplexer

Demultiplexer

- Ten individual gray signals converted to colored signals via wavelength-specific transmitters.
- Ten wavelengths combined onto single fiber using DWDM multiplexer
- Ten wavelengths separated at end of single fiber transmission link using DWDM demultiplexer.
- Commercial DWDM transmission systems today transmit more than 80 wavelengths per fiber.



### **OPTICAL ADD-DROP MULTIPLEXER (OADM)**



- OADM keeps pass-through wavelengths in optical domain
- Only wavelengths being added or dropped get converted to electrical domain
- OADMs for building optical ring networks
  - Higher degree OADMs useful for building optical mesh networks
- Reconfigurable OADMs (ROADMs) allow rapid, remote reconfiguration of add-drop wavelengths
- Latest generation are multi-degree ROADMs



# COLORLESS, DIRECTIONLESS, CONTENTIONLESS ROADM







Colorless – use any wavelength on a given add-drop port. Directionless– use any add-drop port can connect to any direction (degree)

Contentionless– use any wavelength independent of all others in use



#### **OPTICAL AMPLIFIERS AND DWDM**



Multiplexer

- Optical amplifiers amplify ALL of the wavelengths at the same time.
- Without optical amplifiers, alternative would be to demultiplex all of the wavelengths every 60-80km, regenerate the individual component signals (most likely electrically), then multiplex the different wavelengths back onto a single fiber.
- DWDM would not be a very successful technology without optical amplifiers that amplify across a broad spectrum of wavelengths.



#### FORWARD ERROR CORRECTION

- Adds redundant information to data which is used to correct for errors.
  - Implemented in digital electronics.
- Real FEC implementations use 6% to 25% FEC overhead to correct pre-FEC BER of ~10<sup>-3</sup> to post-FEC BER of 10<sup>-15</sup>
- Allows lower OSNR at receiver since higher pre-FEC BER will be corrected with redundant data.
  - Characterized by net coding gain.
  - Translates into more optically amplified spans and/or greater distance between EDFAs.
- FEC is mainly useful for reducing the impact of ASE noise in optically amplified systems.
- Not really useful in extending the reach of unamplified systems.





#### THE DIFFERENT MEANINGS OF OTN

- OTN (Optical Transport Network) standardized in ITU G.709.
- OTN as generic term for optical networking and DWDM
  - Not very helpful use of term in this context
- OTN encapsulation
  - Provides FEC and OAM
  - Referred to as OTN termination when used on router or MPLS switch interfaces for packet traffic.
- OTN Switching
  - Next generation of TDM / circuit switching technology
  - Covering higher speeds than SONET/SDH
  - Defines mapping of lower speed circuits into higher speed circuits.

\* See G.709 for exact values. OTUk rate > ODUk rate > OPUk rate due to FEC and other overhead.

| OTN<br>encapsulation | Approximate<br>bitrate* |
|----------------------|-------------------------|
| ODU0                 | 1.25 Gbps               |
| OTU1/ODU1            | 2.5 Gbps                |
| OTU2/ODU2            | 10 Gbps                 |
| OTU3/ODU3            | 40Gbps                  |
| OTU4/ODU4            | 100Gbps                 |



#### HANDLING PACKET AND TDM TRAFFIC

- Packet traffic most efficiently handled by packet switches (Routers)
  - Dynamic bandwidth allocation
  - Statistical multiplexing
  - Local Repair
- OTN switches are fixed-cell based technologies that are best used for TDM legacy traffic





## INTEGRATING OPTICAL NETWORKING INTO THE IP/MPLS CORE



# FROM TRANSPONDER-BASED CONNECTION TO OPTICAL TRANSPORT SYSTEM...



- Gray transceiver on router
  - "Gray" refers to an optical signal that does not have the optical characteristics to go transparently into the optical transport system. Also referred to as client-side optics.
  - For example, gray transceiver could be 1310nm (1260-1355nm range) on SMF.
- Wavelength-specific transponder on optical system
  - Transponder takes short-reach gray optical signal and converts it to a wavelength-specific optical signal with the right optical characteristics for the optical transport system.
  - Also referred to as "line-side" optics (wavelength specific long-reach interface)
  - For example, wavelength-specific line-side optics could be 1552.52nm.



# ... TO TRANSPONDER-LESS CONNECTION TO OPTICAL TRANSPORT SYSTEM



- Wavelength-specific transceiver on router
  - Optical signal with wavelength (for example,1552.52nm) and longer reach optical characteristics
  - Allows it to go directly onto optical system without a transponder (no O/E/O conversion)
  - Sometimes referred to as "alien wavelengths" from point of view of optical transport system.
- Less expensive due to fewer O/E/O conversions.

#### **Grey interfaces versus Colored interfaces**







#### FROM 100GBASE-LR4...

- Standardized in 802.3ba-2010 for 10km reach on SMF.
- Uses four parallel wavelengths running at 25.8 Gbps each
  - 4x25Gbps transmitters easier than 1x100Gbps
  - Lower bit rate also reduces effect of chromatic dispersion
- Lasers in 1300nm range with 800 GHz channel separation (LAN-WDM)
  - 1300nm range chosen for low dispersion for single-mode fiber
- "Grey" client interface



#### ... TO 100G COHERENT PM-QPSK DWDM Link ADC Rx Tx PolSate 90° Chromatic Dispersion hyb PMD DSP PBC PBS ROADM 90° hvb NL effects The Optical Channel •Polarization multiplexing (PM): Use both polarizations of light to carry independent signals •Lowers symbol rate by a factor of 2 Allows for electronic compensation of PMD •Quadrature-phase shift keying (QPSK): •Uses a constellation with 4 symbols •Lowers symbol rate by another factor of 2

•Captures phase information allowing digital signal processing (DSP) to compensate for chromatic dispersion electronically. •Coherent detection:

•Laser at receiver tuned to wavelength of received light selects detected wavelength in DWDM system •DWDM:

•Optical signal still fits in 50GHz channel spacing for DWDM

•Benefit:

•2500 km transmission at 100Gbps with no external dispersion compensation and high PMD tolerance.



### CONTROL PLANE: GMPLS (GENERALIZED MPLS)

- Set of protocols to dynamically provision optical layer resources
  - Within optical layer
  - From routers to optical layer
- Generalized MPLS (GMPLS) reuses and extends protocols used by MPLS (ISIS or OSPF and RSVP) and adds LMP (link management protocol)
- GMPLS has been around since 2004 but not widely deployed on routers to signal wavelength setup
- Optical layer is becoming more flexible
  - More able to respond to arbitrary wavelength set up demands from packet layer
  - Flexible ROADM technology (directionless, colorless, contentionless)
  - 100G coherent detection with digital signal processing automates dispersion compensation.
- Packet layer requirements increasing



#### **CURRENT STANDARDS WORK**

#### Black Link in ITU-T:

- Recommendation ITU-T G.698.2: Amplified multichannel dense wavelength division multiplexing applications with single channel optical interfaces
- Black Link Framework: http://tools.ietf.org/html/draft-kunze-g-698-2-managementcontrol-framework-01

Black Link Management:

http://tools.ietf.org/html/draft-galimbe-kunze-g-698-2-snmpmib-01

GMPLS-UNI+: <a href="http://tools.ietf.org/html/draft-beeram-ccamp-gmpls-uni-bcp-00">http://tools.ietf.org/html/draft-beeram-ccamp-gmpls-uni-bcp-00</a>



2

#### **PACKET/OPTICAL NETWORKING:** AN OPEN PACKET OPTICAL TRANSPORT ECO-SYSTEM





#### OPEN THE LOOP - PACKET OPTICAL NETWORKING

#### Management plane integration

- NMS displays, monitors and manages native router DWDM ports and services
- NMS partitions DWDM network bandwidth "reservation rules" per customer requirements

#### > Data plane integration

- OTN and non-OTN DWDM router ports connected directly to DWDM platform without the need for transponders
- More than 2000km transmission distance demonstrated at 10Gb/s



#### > Control plane integration

> MPLS/GMPLS interop enables router user (via CLI) or automated script to create end to end loose paths across DWDM network without needing to manually configure the DWDM equipment



#### RESPONDING TO UNPREDICTABLE GROWTH WITH AUTO-WAVELENGTH (ANIMATED)



Auto-wavelength responds quickly to the actual demand growth.If only A to C demand grows, only A to C wavelength is added.Avoids over-provisioning and saves capex.



#### **PROACTIVE PROTECTION**



- FRR: Hitless switch over based pre-FEC BER
- Packet layer protection based on visibility of transport layer performance degradation



# everywhere