
Disruptive Innovation in ethernet switching

Lincoln Dale	

Principal Engineer, Arista Networks���

ltd@aristanetworks.com	

AusNOG 2012	

Ethernet switches have had a pretty boring existence. The odd speed increase or density
jump, the odd protocol improvement in spanning tree or enhancements to link-state
routing protocols, but otherwise not much has changed in 15 years. Fixed-function logic
in silicon had a fixed forwarding pipeline that had limited or no flexibility and any
innovation was limited to networking vendors that could afford to fund the R&D
associated with a 'chipset' of forwarding silicon, ensuring all but a virtual monopoly.	

Then 2012 came along.	

Software Defined Networking (SDN) and OpenFlow promise to allow operators to do
whatever you want with network devices.	

Ever-shrinking process nodes in silicon have enabled ever higher silicon integration and
flexible packet parsing, forwarding and rewrite logic are enabling 'switches' to be
deployed where 'routers' used to rule.	

This presentation aims to give the audience a view into the world of ethernet switch
development, how modern switch silicon works, what silicon process node shrinks mean
for network devices and what an open, software-defined network world may look like.	

We'll cover a soup-to-nuts timeline of how network silicon used to designed and built
to how it is done today and provide insights as to what the future likely holds and what
that means for network operators and what it means to how network design and
architecture will evolve moving forward.	

22 May 1973	

Robert Metcalfe sends a memo to his boss stating
the possibilities of ethernet’s potential	

	

Ethernet is born.	

1975/1976	

Robert Metcalfe and David Boggs
(Metcalfe's assistant) published a

paper titled, "Ethernet:
Distributed Packet-Switching

For Local Computer
Networks."	

1983	

IEEE publishes 802.3 CSMA/CD standard in
draft format.	

Becomes a ratified standard in 1985. ���
(just 12 short years after Metcalfe’s memo)	

1989	

First Ethernet switch (‘multiport bridge’) released!���

(7 x 10BASE-T @ $1500/port)	

	

1990	

IEEE 802.1D Spanning Tree first published	

	

(based on 1985-1989 work from Radia
Perlman at DEC)	

	

2001	

IEEE 802.1w Rapid Spanning Tree introduced	

	

reduces convergence times from 30-50s to 7s	

	

	

woot	

The last decade
Many protocols introduced at L2

L3 protocols pretty much the same	

Spanning Tree replacement(s) TRILL, SPB and PBB

introduced.	

	

Little point in anyone implementing them. ���
(Friends don’t let friends build large L2 networks.) ���

	

Most Ethernet switch vendors introduce ways of avoiding blocked
links on Spanning Tree via MLAG/vPC offering a more

evolutionary evolution.	

Widespread Adoption of Ethernet���
(in servers)	

2002: ���
Fast Ethernet to���
Gigabit Ethernet	

2013/14: ���
Crossover Gigabit���
to 10GbE	

	

The observation made in 1965 by Gordon Moore, ���
co-founder of Intel, that the number of transistors���

per square inch on integrated circuits had���
doubled every year since the integrated circuit ���
was invented. Moore predicted that this trend���

would continue for the foreseeable future.	

	

1975 Revision became
known as Moore’s Law: ���

The Number of Transistors
will double every 2 years	

	

Moore’s Law	

Moore’s Law and CPUs	

Moore’s Law and CPUs	

Sandy Bridge EX	

40Y	

1,000,000X	

Semiconductor Technology Roadmap	

Snapshot on Logic Density	

64 bit CPU Cores over Time���
(if the focus was on just increasing core count) 	

•  Moore’s Law is alive and well	

•  2X Density every 2 Years	

•  Million-fold advance from 1971-2011	

•  Another factor of 100X next 12 years	

•  Billion-fold advance expected 1971-2031	

•  Beyond that its hard to forecast	

There has been nothing like this in the history of mankind	

Moore’s Law Summary	

Moore’s Law and Networking	

Performance	

Time	

CPUs 2X/2Y = 64X/12Y	

LAN 1GbE to 10GbE: 10X/12Y	

WAN Routers: 4X/12Y	

Why has Networking not kept up with Moore’s Law?	

•  Moore’s Law applies to Transistors, not Speed	

•  Transistor count is doubling every 2 years	

•  Transistor speed is only increasing slowly	

•  Number of I/O pins per package basically fixed	

•  Limited by die area and package technology	

• Only improvement is increased I/O speed	

•  Bandwidth ultimately limited by I/O capacity	

•  Throughput per chip = # IO Pins x Speed/IO	

• No matter how many transistors are on-chip	

Three main problems	

SERDES Speed (high density CMOS)	

Number of SERDES per Package	

Maximum Throughput per Chip	

Moore’s Law and Networking	

Performance	

Time	

CPUs 2X/2Y = 64X/12Y	

LAN 1GbE to 10GbE: 10X/12Y	

WAN Routers: 4X/12Y	

Why has Networking not kept up with Moore’s Law?	

Maximum Throughput per Chip	

•  ASIC = Application Specific Integrated Circuit	

•  ‘Top-down’ design, independent of layout	

•  ASIC supplier does physical implementation	

•  Difficult to achieve high clock rates this way	

•  Full Custom Flow	

•  Chip design starts with clock rate objective	

• Data Paths designed to achieve clock rate	

• Only way to achieve high clock rates	

Typical Result: 8X Higher Density in Full Custom vs ASIC	

‘ASIC’ vs ‘Full Custom’ Chip Design	

Full Custom 64 port 10G Switch Chip	

Full Custom 64 port 10G Switch Chip	

SERDES (Ports)	

Buffer Memory	

L2 (MAC) hash table	

L3 (LPM) m-trie	

TCAM (ACL etc.)	

Forwarding logic	

64 port 10G Switch: Custom vs ASIC	

Full L2/L3	
 L2 only	

Full Custom Switch Chips have	

•  more ports per chip	

•  much lower latency (due to fewer chip crossings)	

•  consume less power	

•  more room for additional logic/processing/functionality	

•  much more reliable than traditional ASIC multi-chip

designs	

Full Custom chips ARE on Moore’s law	

	

ASIC designs are NOT on Moore’s law	

Advantages of Full Custom Chips	

Next generation custom switch silicon is on Moore’s Law!	

Evolution of Custom Switch Silicon	

Technology	
 130nm	
 65nm	
 40nm	
 28nm	

10G ports	
 24	
 64	
 128	
 256	

Throughput	
 360M PPS	
 960M PPS	
 2B PPS	
 4B PPS	

Buffer Size	
 2 MB	
 8 MB	
 16 MB	
 32 MB	

Table Size	
 16K	
 64K	
 128K	
 256K	

Port Speeds	
 10G	
 10G/40G	
 10G/40G/100G	
10G/40G/100G	

Availability	
 2007	
 2011	
 2013	
 2015	

Improvement	
 -	
 3X/4Y	
 2X/2Y	
 2X/2Y	

•  Next Generations scale with Moore’s Law	

•  Table sizes double every process node	

•  Industry catching up on process roadmap���
	

•  I/O Speed scales less than Moore	

•  Larger package sizes offset this constraint	

•  Next step is 25G SERDES in 2013���
	

•  Full Custom Design Flow Required	

•  ASIC design flow wastes silicon potential	

	

Moore’s Law and Networking	

•  Faster CPUs need Faster ���
Networks	

•  Intel Sandybridge driving���

10GbE adoption	

•  50% attach rate 2013, ���

80% by 2015���
	

•  10/40/100G Market growing rapidly	

•  $4B in 2010 to $16B in 2016	

•  From 5M ports 2010 to 67M ports 2016���
	

•  Faster End nodes need faster Backbones	

•  Many apps drive east/west traffic not north/south	

•  Cluster sizes getting larger & larger	

CPUs driving the Network Upgrade	

How real Clouds are Built	

Besides larger tables, what else can 2X/2Y
transistors be used for?	

Ingress	
 Egress	

Historically the processing pipeline was fixed in switches	

Besides larger tables, what else can 2X/2Y
transistors be used for?	

Ingress	
 Egress	

Flexible Packet Parsing and Flexible Packet Rewrite provide	

Router-port functionality at Switch-port pricing	

Header&

Channels&

Parser&
CM&
&&

Sched&
Modify&

L3+&
Lookups&

L3+&
Ac<ons&

L2&Lookup&
&&Filtering&

Global&
Ports&

Egress&
Ac<ons&

Sta<s<cs&Atomic&Tables& Configurable&Logic&

Moore’s Law and Networking	

Performance	

Time	

CPUs 2X/2Y = 64X/12Y	

Switching (Full Custom): 2X/2Y	

WAN Routers: 4X/12Y	

Switching (ASIC): 10X/12Y	

Besides larger tables, what else can 2X/2Y
transistors be used for?	

Flexible forwarding requires flexible ways of exposing the���
underlying functionality	

SDN	

#!/usr/bin/env python
Copyright (c) 2012 Arista Networks, Inc. All rights reserved.
Arista Networks, Inc. Confidential and Proprietary.

import Tac
flowTable = d.newEntity("OpenFlowTable::HwConfig", "default")
match = Tac.Value("OpenFlowTable::Match")
matched = Tac.Value("OpenFlowTable::MatchFieldSet")
actions = Tac.Value("OpenFlowTable::Actions")
enabled = Tac.Value("OpenFlowTable::ActionSet")

match.inIntf = "Ethernet1" # match traffic arriving on ethernet1
matched.inIntf = True

match.vlanId = 100 # match traffic ingress vlan 100
match.vlanIdMask = 0x0fff
matched.vlanId = True

match.ipSrc = "10.0.0.1" # match src ip of 10.0.0.1 only
match.ipSrcMask = "255.255.255.255”
matched.ipSrc = True

match.ipDst = "10.0.0.2" # match dst ip of 10.0.0.2 only
match.ipDstMask = "255.255.255.255”
matched.ipDst = True

match.l4Dst = 80 # match http traffic only
matched.l4Dst = True
match.matched = matched

actions.outputIntf["Ethernet23"] = True # send out eth23
actions.outputIntf["Ethernet44"] = True # and et44
enabled.outputIntf = True
actions.enabled = enabled

print "Adding to flow table”
flow = flowTable.newFlowEntry("flow100", match, actions)

def printFlowTable():
 for flowName, flow in flowTable.flowEntry.items():
 print "%s:" % flowName
 print " match: %s" % flow.match
 print " actions: %s" % flow.actions
 print " priority: %s" % flow.priority

print "Printing flow table”
printFlowTable()

print "Deleting flow”
del flowTable.flowEntry["flow100”]

Besides larger tables, what else can 2X/2Y
transistors be used for?	

