

DYNAMIC NETWORK MODELING

Joel Obstfeld – jobstfeld@juniper.net Director, SW Engineering CTO Team, Platform Systems Division

NETWORK MODELING OVERVIEW

NETWORK MODELING OBJECTIVES

Data networks are dynamic entities

- Networks 'evolve' over time
- Introduction of new services and technologies
- New hardware triggered changes to original designs

Networks may initially reflect the planned architecture but tend to diverge

Network modeling enables us to

- Better understand the network and to be able test various assumptions
- Investigate new designs, services, impact of new technologies

Sometimes we're even surprised by what we find

WHY MODEL NETWORKS?

Network Capacity planning amidst traffic uncertainty

- Sensitivity to traffic changes, projected growth
- Identify where to most effectively add capacity

Disaster planning and recovery

- Single failures are 'simple'
- Multiple failures introduce much more complexity, unforeseen behaviours

Optimizations

- Benefits (& risks) of merging or evolving current networks to new designs
- Engineering the network for services
- Route-reflector, Content-Cache placement efficiency

Quantifying the benefits of technology choices

- The efficiency of Statistical multiplexing vs. Circuit switching
- Costs associated with the choices

Multi-layer Topologies – interaction of Layer-1 and Layer-3 environments

- Fibre routing, SLRG
- Explicit diverse path planning

Routing Metric & Policy Engineering

- Planning IGP metrics to influence traffic paths vs trying it in the live network
- BGP policy engineering

BUILD A COMPLETE VIRTUAL REPRESENTATION OF THE DYNAMIC NETWORK

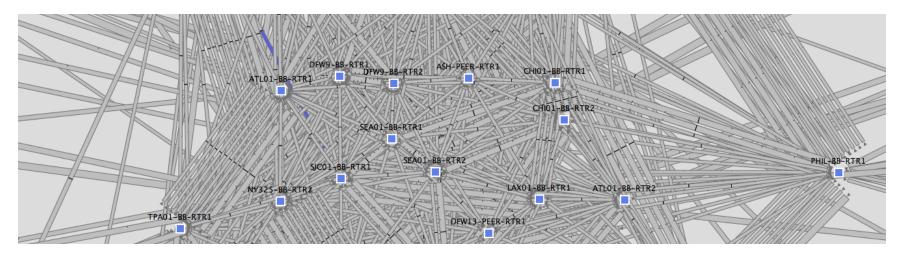
Move beyond just nodes & lines on a screen

Applying solutions from virtualization/data-centers to networking modeling

Augment network modeling with virtual machine and virtualized networking tools to go beyond the diagram

- Build high-fidelity models of operational networks
- Demonstrate new service architectures such as Seamless MPLS
- In-depth investigation of the 'what-if' scenarios
- Enable operations teams to validate planned changes
- Pre-flight checks before config push
- Replay events from the live network, e.g. BGP routing disasters
- Architecture change phasing plans

FULL VIRTUAL ROUTER APPLIANCES

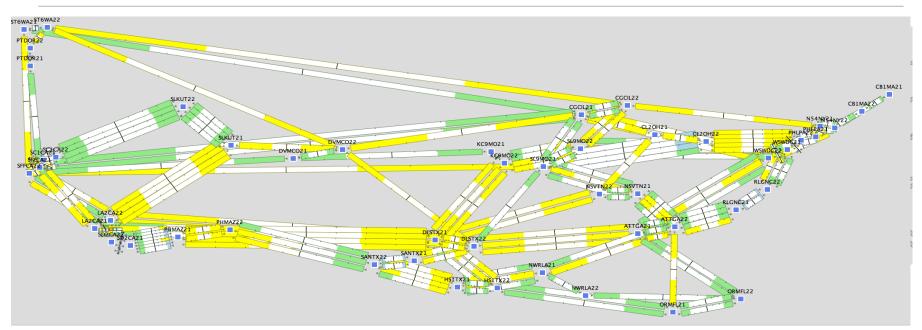

- Full-featured virtual router running JUNOS VJX1000
- SW-based Forwarding plane
- Details available from http://www.juniper.net/us/en/productsservices/software/junos-platform/junosphere/#overview

- IPv4/IPv6 Unicast / Multicast
- Routing: OSPF, BGP, RIPv2, Static routes, IS-IS,...)
- Multicast: IGMPv3, PIM, SDP, DVRMRP, Source Specific)
- MPLS: Layer 2 VPN (VPLS), Layer 3 VPN, LDP, RSVP
- Encapsulations: Ethernet (MAC and tagged), PPPoE

- NAT/Stateful Firewall Filters/Intrusion Detection
- Tunneling: GRE, IP in IP
- COS
- User Authentication/Access: RADIUS, RSA SecureID, LDAP
- J-Web, CLI

QUINTESSENTIAL CASE STUDY

A large Service Provider "A" expands its network via acquisition of another Service Provider "B"


SP A instigates plans to merge networks, save costs, drive innovation

Years later, networks are still distinct, migration still being studied

Why? Too risky and no way to feasibly simulate a migration

COMPLEXITY – SIMPLIFIED

- Model current network state
- Simulate the interconnects
- Work through the migration steps line-by-line configuration changes
- Identify the failure points in the migration process

Dynamic modeling can help reduce the risk and improve confidence that the migration will work

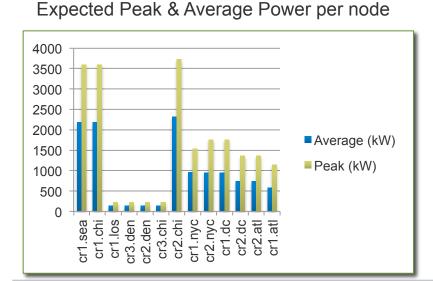
LEAST POWER COST SELECTION

LEAST POWER COST SELECTION

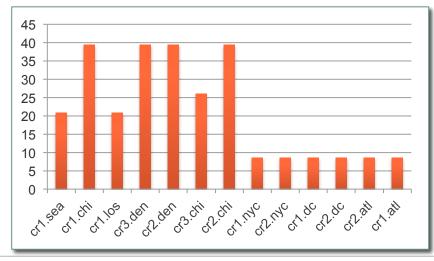
Least Power Cost Path Selection is an approach to determining how to 'place' traffic demands across a network in a costeffective manner

It also provides a framework for assessing the impact of introducing next-generation network technologies from a power-budget perspective

Ability to take advantage of differences in cost of power, powersource types, time of day variations, that IGPs don't currently take into account



SIMPLE POWER PROFILING



Offline network models, derived or obtained from actual SP topologies

- An information base of power-draw (Watts) of each node based on its computed inventory
 - 'Common equipment' plus each installed FPC & PIC
- Resulting in the cost (Watts) per Gb for data passing through a node

GENERATE INVENTORY AND POWER ANALYSIS

		ke New/July	/ 21 Meeting/Thuse	2/_4_3_100G E_	OPT SKLG KIG
	ATTGA21				
Upgrade history	Requirement	Count	Cost	Power	
	ptx9000 PTX-FPC PTX-FPC-100GIG 100gige cfp				
M (text)	100gige cfp Total cost: 4454500	15	150000	n/a	
	Total cost: 4454500				
	ATTGA22				
		Count		Power	
	ptx9000 PTX-FPC PTX-PIC-100GIG 100gige cfp	1 7 13	236500 (%57) 188000 (%60) 152000 (%62)	3100 1000	
	Total cost: 7428500	20		n/a	
	CB1MA21				
	1 · · · ·		Cost		
	ptx9000 PTX-FPC PTX-PIC-100GIG 100gige cfp	1 1 2	236500 (%57) 188000 (%60) 152000 (%62)	3100 1000	
	100gige cfp	4	150000	n/a	
	Total cost: 1328500				

Populated power and hardware data into MATE that easily allows for the generation of inventory and power requirements

	ow All Sel	ect All 🔻 Filter	50/50 rows (0	selected)		4
	Node	Model	MultiChassisRequ	LinecardChassis(Cost	Power
	ATTGA21	ptx9000	No	0.00	4454500.00	7100.00
	ATTGA22	ptx9000	No	0.00	7428500.00	10100.00
	CB1MA21	ptx9000	No	0.00	1328500.00	4100.00
	CB1MA22	ptx9000	No	0.00	1328500.00	4100.00
	CGCIL21	ptx9000	No	0.00	7428500.00	10100.00
	CGCIL22	ptx9000	No	0.00	5244500.00	8100.00
	CL2OH21	ptx9000	No	0.00	4454500.00	7100.00
	CL2OH22	ptx9000	No	0.00	4454500.00	7100.00
	DLSTX21	ptx9000	No	0.00	7880500.00	10100.00
10	DLSTX22	ptx9000	No	0.00	6788500.00	9100.00
11	DVMCO21	ptx9000	No	0.00	1968500.00	5100.0
12	DVMCO22	ptx9000	No	0.00	4604500.00	7100.00
13	HS1TX21	ptx9000	No	0.00	4152500.00	7100.00
14	HS1TX22	ptx9000	No	0.00	4152500.00	7100.00
15	KC9MO21	ptx9000	No	0.00	1328500.00	4100.00
16	KC9MO22	ptx9000	No	0.00	3512500.00	6100.00
17	LA2CA21	ptx9000	No	0.00	5244500.00	8100.00
18	LA2CA22	ptx9000	No	0.00	8520500.00	11100.00

POWER ANALYSIS

We compute full power usage details, for each chassis and all its active components

- We can then compute the power cost for each demand in the network
- (Future) TE option to route LSPs across the least power cost path

0		/	Users/cma	rtin/Des	ktop/AT&T	Doverspike New/Ju	ly 21 Meeting,	Phase 2/100G E_0	OPT SRLG Rig	htsize-40pct.pln plan info			
orts		Show All Select All Filter 587/587 rows (1 selected)											
CircuitUpgrade Design history			Node	Slot	Hardware	Component Draw (w)	Total Draw (w)	Maximum Draw (w)	Annual kWh	Annual Carbon Footprint (lbs)	Energy Consu	Expected Therma	Max Thermal O
CircuitRightsize		1	LA2CA22	chassis	commons	3644.00	7964 (total)	24750 (total)	69804.46	90536.4	39.8	27180.9	84471.0
Simulation Analysis		2	ATTGA22	chassis	commons	3644.00	7424 (total)	24750 (total)	65071.36	84397.6	37.1	25337.9	84471.0
owerAnalyzer Node Power (none) (587)	- 11				commons			24750 (total)		84397.6	37.1	25337.9	84471.0
Site Power (none) (50)			DLSTX21					24750 (total)	65071.36		37.1	25337.9	84471.0
Network Power (none) (1)			SFFCA21					24750 (total)		84397.6	37.1	25337.9	84471.0
			DLSTX22					24750 (total)		78258.7	34.4	23494.9	84471.0
		7	SL9MO22	chassis	commons	3644.00	6884 (total)	24750 (total)	60338.26	78258.7	34.4	23494.9	84471.0
		8	WSWD	chassis	commons	3644.00	6884 (total)	24750 (total)	60338.26	78258.7	34.4	23494.9	84471.0
		9	CGCIL22	chassis	commons	3644.00	6344 (total)	24750 (total)	55605.16	72119.9	31.7	21651.9	84471.0
		10	LA2CA21	chassis	commons	3644.00	6344 (total)	24750 (total)	55605.16	72119.9	31.7	21651.9	84471.0
		11	PHLPA22	chassis	commons	3644.00	6344 (total)	24750 (total)	55605.16	72119.9	31.7	21651.9	84471.0
		12	SL9MO21	chassis	commons	3644.00	6344 (total)	24750 (total)	55605.16	72119.9	31.7	21651.9	84471.0
		13	WSWD	chassis	commons	3644.00	6344 (total)	24750 (total)	55605.16	72119.9	31.7	21651.9	84471.0
	1	14	ATTGA21	chassis	commons	3644.00	5804 (total)	24750 (total)	50872.06	65981.1	29.0	19808.9	84471.0
		15	CL20H	chassis	commons	3644.00	5804 (total)	24750 (total)	50872.06	65981.1	29.0	19808.9	84471.0
		16	CL2OH	chassis	commons	3644.00	5804 (total)	24750 (total)	50872.06	65981.1	29.0	19808.9	84471.0
		17	DVMC	chassis	commons	3644.00	5804 (total)	24750 (total)	50872.06	65981.1	29.0	19808.9	84471.0
		18	HS1TX21	chassis	commons	3644.00	5804 (total)	24750 (total)	50872.06	65981.1	29.0	19808.9	84471.0
		19	HS1TX22	chassis	commons	3644.00	5804 (total)	24750 (total)	50872.06	65981.1	29.0	19808.9	84471.0
		20	N54NY	chassis	commons	3644.00	5804 (total)	24750 (total)	50872.06	65981.1	29.0	19808.9	84471.0
		21	NSVTN	chassis	commons	3644.00	5804 (total)	24750 (total)	50872.06	65981.1	29.0	19808.9	84471.0

Copyright © 2011 Juniper Networks, Inc. www.juniper.net

WHAT CAN WE DO WITH THESE MODELS?

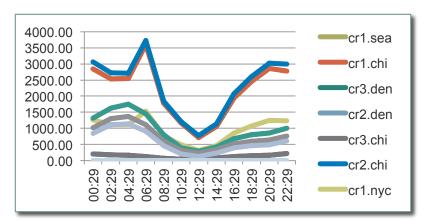
The previous slide demonstrates an efficient inventory & ROI tool for introducing NG technology

• e.g. Inserting PTX will pay for itself in X months but ...

We can incorporate other factors

- Facilities costs e.g. PECO vs. Co-Lo, etc.
- And of course ... the Traffic Matrix

Facility Costs

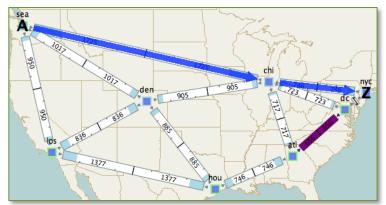

Traffic Matrix

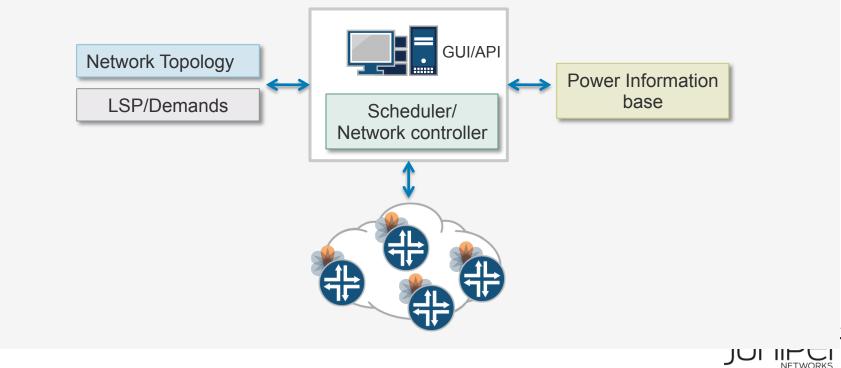
WE CAN COMPUTE A DEMAND DRIVEN POWER UTILIZATION

The cost of individual demands can be quantified as well as the effects of demand aggregation

- In figure #1 the Nodes transited for a demand from Seattle to NYC pe1.sea, cr1.sea, cr1.chi, cr2.chi, cr1.nyc, pe1.nyc
 - Path cost = 159.89 W/Gb, B/W of demand at time X = 13Gb
 - Path cost of demand = 2.079KW

Time of Day, Demand driven Power Utilization




Figure 1: Seattle to NYC demand

WHAT'S NEXT

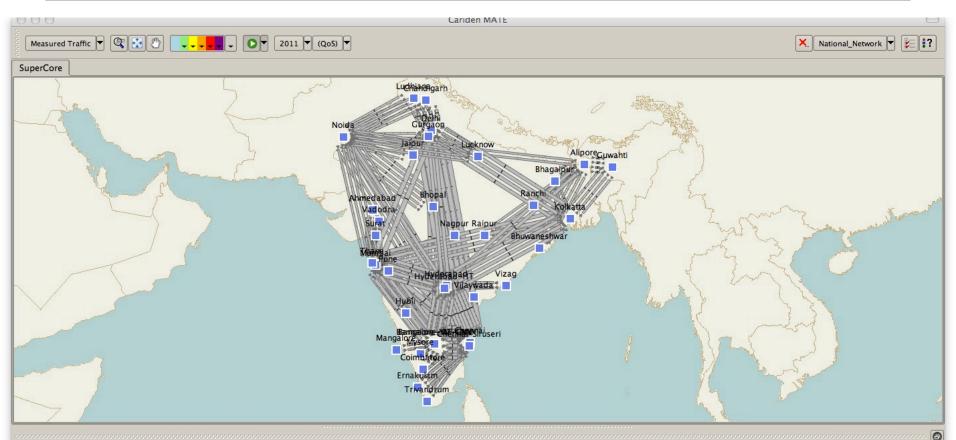
Combining power consumption information & routing analytics enabling more informed decisions about:

- Taking advantage of cheaper power sources, time-of-day pricing, lower carbon tonnage etc.
- Route high B/W demands more efficiently &/or react to natural disasters
- Automated provisioning of paths TE explicit paths, for example

CONSTRUCTING NETWORK MODELS

NECESSARY DATA FOR SUCCESSFUL MODELS

Diagrams are good – data is <u>better</u>

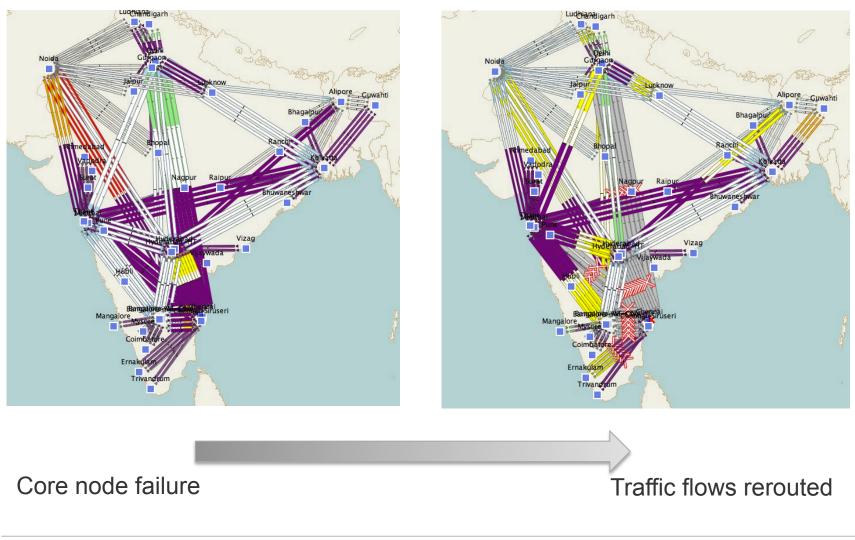

A successful approach requires:

- A topology (OSPF or IS-IS LSDB where possible)
- The link types in the network (speeds)
- Any layer 0/1 protection schemes in use
- A traffic matrix (demands from node to node)
- Time of day traffic behaviour
- Expected growth forecasts (ie, 40% YOY)

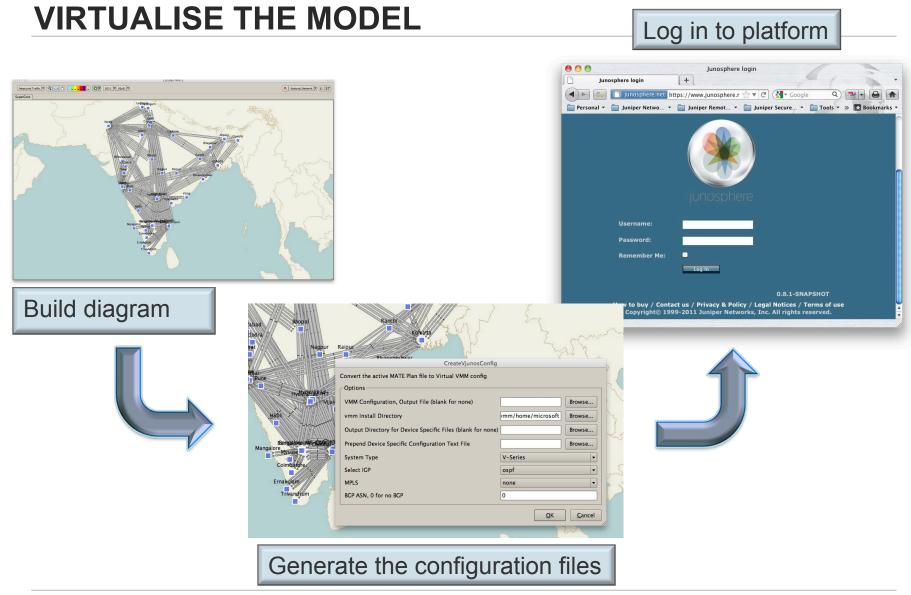
In addition, we can build a more accurate model if we know


- Any engineering guidelines for things like latency bounds, QoS handling, etc
- The layer 1 topology
 - Resulting SRLGs, Lambda contention, Span lengths
- The current hardware inventory of the network
- Any measured utilization on interfaces (MRTG for example)

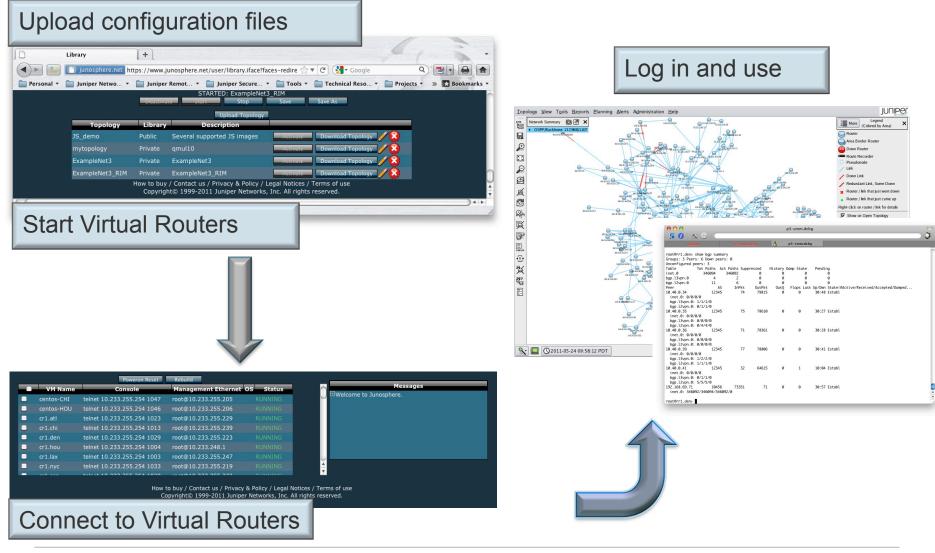
LOADING THE NETWORK


	Interfaces	Demands Shortest		Paths	ths Nodes		LSPs Sites		SRL	.Gs	AS			
Sh	Show All Select All 🔻 Filter 👻 508/508 rows (0 selected)													
	Node	Interface	Remote Node	IGP Metric		Traff Sim	Traff Meas	Capacity Sim	Util Sim	Util Meas	WC Util	WC Failures		
1	Chennai-CNV	{to_Mumbai-CNV}	Mumbai-CNV		1	6967.71	na	10000.00	69.68	na	na	na		
2	Mumbai-CNV	{to_Chennai-CNV}	Chennai-CNV		1	2071.17	na	10000.00	20.71	na	na	na		
3	Chennai-CNV	{to_Mumbai-CN	Mumbai-CNV		1	6967.71	na	10000.00	69.68	na	na	na		
4	Mumbai-CNV	{to_Chennai-CN	Chennai-CNV		1	2071.17	na	10000.00	20.71	na	na	na		
5	Chennai-CNV	{to_Mumbai-CN	Mumbai-CNV		1	6967.71	na	10000.00	69.68	na	na	na 🔺		
6	Mumbai-CNV	{to_Chennai-CN	Chennai-CNV		1	2071.17	na	10000.00	20.71	na	na	na		

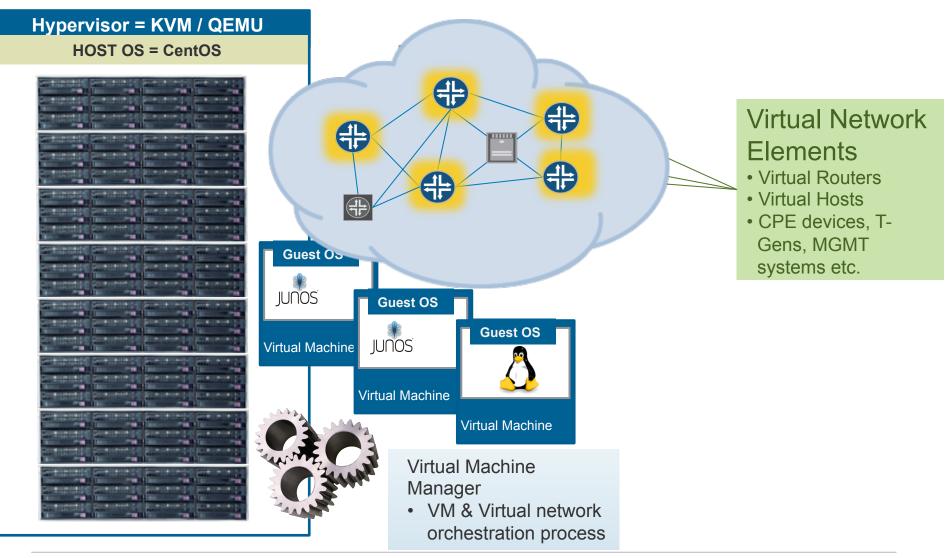
TRAFFIC DEMANDS APPLIED



AND WHEN THINGS GO WRONG...

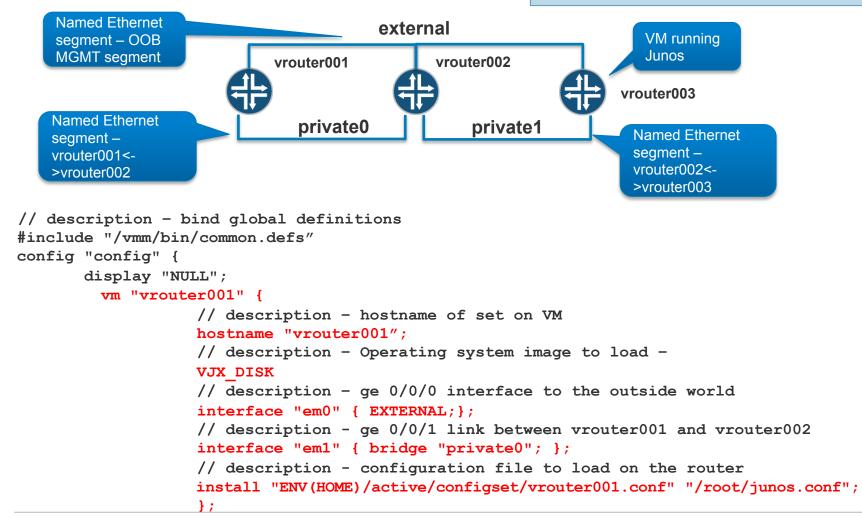


FULLY VIRTUALIZED NETWORK MODEL



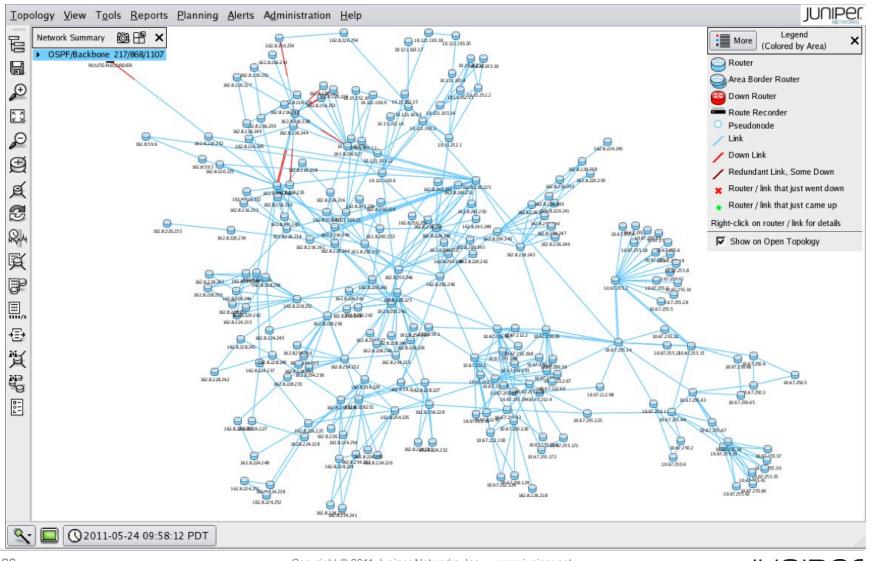
STARTUP

PLATFORM COMPONENTS



VMM EXAMPLE

Open-source tools in development with University of Adelaide



VMM EXAMPLE

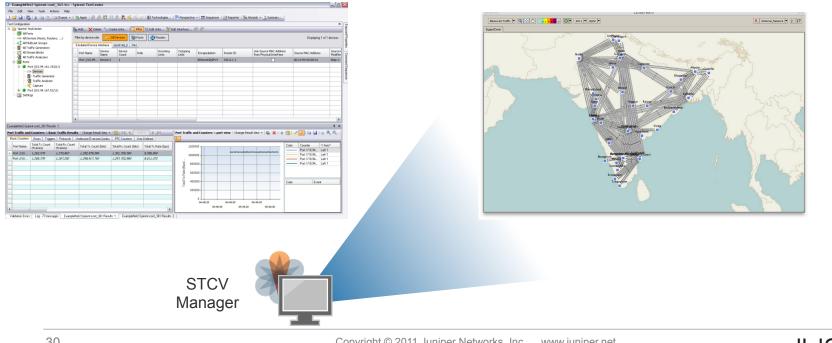
LOOKING INSIDE THE VIRTUAL WORLD

Copyright © 2011 Juniper Networks, Inc. www.juniper.net

MANAGEMENT TOOLS

Can take tools that you use in you physical network and deploy into the virtual – VMs don't know that they're not physical devices

MRTG monitoring SNMP stats and generating graphs



SPIRENT ROUTER TESTER INTEGRATION

Spirent Test Center Virtual is a software package that extends & complements the capabilities of Spirent Test Center - a virtual trafficgenerator for the virtual world

Network operators can:

Run real-world traffic and control-plane events over virtualized networks

VIRTUALIZED NETWORKS IN OPERATION

NANOG 51/52/53 – RPKI Workshop

http://www.nanog.org/meetings/nanog52/presentations/Sunday/110612.nanog-lab-agenda.pdf

RIPE62 – RPKI Workshop

http://ripe62.ripe.net/programme/meeting-plan/tutorials

Queen Mary University of London – Networking labs

- Paper at SIGCOMM/ACM Toronto
- http://edusigcomm.info.ucl.ac.be/pmwiki/uploads/Workshop2011/20110311002/sigcom2011_VindyaWijeratne.pdf

Loughborough University – Networking labs

Universitat Wien – Networking labs

Boston University – Network Security

Roma Tre University – Network software development

- Paper at IEEE Network Operations and Management Symposium, Hawaii
- http://www.ieee-noms.org/cfp.html

Internet Institute Japan – Internet routing research

Cambridge University, Systems Research Group – Internet routing research

Networks from 50+ International Service Providers

SUMMARY

Fully virtualized networks are a powerful tool

- Interconnect with existing physical network labs
- Node-accurate 'what-if' testing ground
- Ability to provide operations teams with a 'safe' environment to learn via 'break & recover' methods
- Reduce the risk of complex configuration changes, service migrations etc.
- Build and operate planned networks before any equipment is physically deployed
- Development platform for programmable networks & orchestration
- Platform for research, development and collaboration

THANK YOU

everywhere