
Pragmatic Network
 Management Systems

Andrew Fort, Enemesco
andrew.fort@enemesco.net

Enemesco

Enemesco

Introduction

• Andrew Fort: network operator, tools developer

• Ran BBS (Liquid Metal) 1991-94

• PowerUp/WebCentral (7496),Connect (2764), UEcomm
(10223), Google (15169, 36561)

• Wrote Notch, Mr. CLI, PUNC (CLI automation tools)

Enemesco

The problem...

• Networks are multi-vendor, multi-technology

• Most networks are “bespoke”, even if only slightly

• Features you’ve never heard of?

• If not yet, merge with a competitor

• Lots of management systems, duplication, formats

Enemesco

Hold-up problem

• http://en.wikipedia.org/wiki/Hold-up_problem

• “Before upgrading the NMS, your devices must run minimum
software version...”

• “We’ll support that feature on your device in version...”

• “Our trial API will be ready after further customer feedback...”

Enemesco

Business benefits to
 doing your own development

• Why take the risk?

• Reduce licensing costs

• Increase operator engagement

• Staff retention benefits

Operators tend to feel like packages get dumped on them

Enemesco

What does a pragmatic
 system look like?

• Simple, flexible network model

• Single collector, easy data chaining

• Slice and dice tools

• Visualisation dashboards

• Components developed in the open

Enemesco

Project goals

• Solve the NOC’s 3 biggest pain points;

• Improve alerting: notify customers more rapidly

• Reduce errors and delivery times through automation

• Improve network resource and operator efficiency

• Faults, operations

• Which customers are affected?

• What equipment is involved?

• Recent network changes, events

• What are the devices reporting right now?

• Planning

• What equipment do we have? In which lifecycle state?

• Growth and deal planning

• Historical network views, reporting

Enemesco

Build your own network model

• A crucial network asset

• Use the model to manage all your systems

• Own this component to manage hold-up

• Some coding is required; fear not

Enemesco

Example modelling mistake

• No

“We have a chassis, in which are slots, in which are modules, in
which are ports...”

• Yes

“Device br1.mel has 2 TenGE interfaces, Te0/1/0 and Te5/0”

Other problems: not using independent primary keys for objects (you will have two
“br1.mel”s at some point).

Enemesco

Don’t get (too) clever

• The model will become complicated by itself

• Make progress - in the first days, answer a single question

• Your salespeople are trained to break your model

• “Perfect is the enemy of done”, “Real artists ship”, etc

Derive everything you can

You can keep historical as well as future state, and the system knows what to overwrite with learnt
data and what not to.

Some limited “live data” in your authoritative model is acceptable. For example, Interfaces
modelled during discovery will not update the flags like ‘monitored’ on existing interfaces, but
other changes (like an IP address change), you would like to automatically update.

Alot of the fears of mixing live data in the authoritative model go away as history can be used to
synchronise and revert changes.

Enemesco

Discovery engine

• Poll each device’s resources, determine connectivity

• Layer 2: LLDP (best), MAC associations, descriptions (worst)

• Layer 3: Routing protocols, address heuristics (same /31, etc)

• Mostly SNMP with Notch for CLI access

Enemesco

Example device model
{
 name: “ar1.melb”,
 ipaddr: [“172.16.6.121”], # For management
 monitored: true,
 alertable: true,
 rancid_type: “juniper”,
 hw: “m7i”, sw: “9.6R1”,
 tags: [“melb”, “access”, “change_742”]
 via: “ discovery”,
 _revision: 14,
 ts: 1282836734688, # Time revision was updated
}

Each model can be a value in a key/value or document database.

Indexes and range queries allow us to slice and dice the data model effectively, and answer questions
like

What was the metadata on this device three weeks ago last tuesday?

Enemesco

Visualisation

http://xkcd.com/350/

Enemesco

Visualisation / Dashboards

• Discovery gives us what we need to build graphs

• You can build them with mktop & top2dot; GraphViz

• I use the Python NetworkX package from LANL

• Overlay live performance and fault data

• Network WeatherMap, Internode NodeMap

Enemesco

Dashboard types

• Ping matrix (e.g. smokeping), show a grid of POPs

• Device and Interface detail tables

• Path analysis (e.g., LSP per-hop graphs)

• Per-VPLS/VLAN mac table growth

Enemesco

Further visualisation reading

• Read: “The Visual Display of Quantitative Information” (Tufte)
http://xkcd.com/418/

Enemesco

Notch: automating the CLI

Enemesco

What’s Notch?

• Network Operators’ Toolkit for Command-line Hacking

• Gives any router an API

• Logs in and does stuff on request, logout when idle

• Kinda like low latency RANCID *login tasks

• Very similar to Google’s system

Enemesco

What’s Notch used for?

• Mr. CLI - a multi-router CLI with parsing/CSV output

• PUNC - A RANCID-style router backup tool

• Unit Test or Audit network procedures and configuration

• collect from the CLI with collectd (gallop)

Enemesco

Notch/Mr. CLI demo

Enemesco

Alerting

• Sources: traps/log messages/threshold or rate alerts

• Use discovery data to add service IDs to NOC alerts

• Works with most any alert/ticket system

Improving alert value; how to do it

One piece of information that tells you what’s broken, who’s affected and where it
is.

Enemesco

In summary

• Commercial tools are often under utilised, have high prices and
are expensive to customise

• Free software is now available for every component

• Like a modern web application

• Integration costs are similar; no ticket cost

• Start with concrete goals

Enemesco

Questions?

Enemesco

Thank you!

• Read this blog to follow our network model development

• http://blog.enemesco.net/

