Internet Traffic Trends A View from 67 ISPs

AUSNOG Sydney, Australia August 21, 2008

Danny McPherson danny@arbor.net

Craig Labovitz <u>labovit@arbor.net</u> Scott lekel-Johnson <u>scottij@arbor.net</u> Haakon Ringberg (<u>hlarsen@arbor.net</u>)

State of Internet Statistics

- Lack of global, quantitative Internet traffic studies
 - Some single ISP traffic research and commercial datasets (e.g. Akamai, Google, etc.)
 - Lots of BGP data and many analyst reports
 - But last global traffic data from 1995 ARTS report
- Significant open engineering / research questions
 - How is the Internet traffic evolving?
 - Am I the only ISP seeing this attack?
 - Is growth of application X local or Internet wide?

Internet Traffic Project

- **Goal**: Provide first global view of Internet traffic and attack trends
- Leverage commercial probe deployments
 - Pool of 2,500+ Flow / DPI collectors
 - Across 250 ISPs / Content Provider / Higher Ed
- Internet scale data collection
 - Traffic, DPI, Mitigation and Security datasets
 - Geographically and topologically diverse

Internet Traffic Project

- Service operational and research interests
- Outgrowth Fingerprint Sharing Initiative (45 publicly disclosed participants) and Security Survey
- Data from explicit voluntary anonymous data sharing agreement with ISPs
- Research Partners
 - Arbor, University of Michigan, Princeton (Intern)
 - And 78 customers (and growing)
- Initial / preliminary presentation of data

Internet Traffic Deployment

- 67 long-term participants (2 years)
- 17 unique countries
- 27 in US, though many have global footprint

Current Traffic Project Deployment

- 67 long-term ISPs (now 78)
 - 5 MSO, 4 Tier1, 15 Tier2, 4 Content, 1 R&E
 - Remainder not self-catagorized
- 1,270 routers
- 141,629 interfaces
- > 1.8 Tbps of inter-domain traffic
- 638 days and counting (began SEP 2006)

Typical ISP Deployment

- Flow (NetFlow / JFlow/ / etc) from all peering edge routers
- DPI from gigabit inline / portspan in front of customers or server clouds
- Exported to commercial probes
 - Usually 1/100 1/000 sampling
 - Regexp or BGP based classification of border interfaces to avoid double counting
 - Data validated against interface SNMP counters

Probe Data Sources

- Five minute traffic samples
 - Traffic In/out of network (subset of backbone traffic)
 - Cross-products based on top N protocols, ASNs, ports, applications, etc.
- Traffic anomaly data
 - Combination protocol signatures, behavior and statistical variance from baselines
 - Distinguish Attack versus Flash Crowd
 - Annotations and mitigation status
- Self-Categorization
 - Tier1/2/3, Content, High Ed, etc
 - Predominant geographic coverage area

Internet Traffic Project

- Each participating ISP deployment submits XML
- Anonymous XML over SSL every hour
- Arbor managed servers collect/process

90 Day Protocol Distribution Trends

- No real surprises: TCP dominates followed by UDP
- Possible North America / Europe bias to dataset given diurnal patterns
- Wither IPv6?

60 Day TCP Port Trends

- Again, no surprises: http/80 by far most prominent TCP port
- In second place, Tcp/4662 (edonkey) most prominent inter-domain peer-2-peer file sharing protocol
- Rises of NNTP (ranks 3rd) as file sharing alternative (alt.binaries!)

IPv6 Traffic Distribution

- ASNs with IPv6 BGP Announcements: 3%
- Internet2 sites with passing IPv6 Grade: 1%
- Alexa Top 500 websites IPv6-enabled: 0.4%
- IPv6 DNS queries as % of total: 0.2%
- IPv6 percentage of all Internet traffic: 0.0026%

IPv6 as Percentage of IPv4 Internet Traffic

Aggregate IPv6 Traffic

- Since July 2007, IPv6 traffic has grown by nearly a factor of 5 to an average of 100 Mbps per day.
- BGP tables show an even larger proportional growth. Though not a landslide of adoption, it is still something.

Teredo, Port Obfuscation, etc..

- If port obfuscation or related techniques are employed we're held captive to that, as our observations *here* are based solely on Network and Transport layer data
- Teredo traffic upticks have been observed, new chart as of yesterday below. If not using well-known ports well, yes, we realize that's not reported
- Only 14 deployments have observed any port 3544 control traffic, and of those only two saw a significant amount. The rest saw only kbps, and had weeks of none subsequently
- Some observable upticks as a result of new software releases, industry events, etc.. (e.g., uTorrent, IETF)
- IPv6 here still miniscule compared to aggregate

Aggregate IPv6 Teredo (port 3544)

The Tiger Effect

12:30 PM Tiger misses. Rocco is now one up.

1:15 PM First Sudden Death

1:45 PM Tiger wins!

9:15 AM Tiger Tees Off 9:30 AM Third hole 10:00 AM Fith hole 11:30 AM 11th hole. Tiger is one up.

- June 16 spillover from U.S. Open at Torrey Pines, sudden-death playoff
- Largest sources of traffic were CDN network
- Tiger beat Rocco Mediate

Anomaly Summary

- Attacks based on statistical anomaly detection
- Primarily rate-based DDoS attacks
- We'll focus mostly on misUse attacks
- Total Attacks
 - 640 days: 1,166,282
 - 172 days: 582,412
 - 42 days: 200,782

Attack Class Distribution

- Fairly consistent over past ~2 years
- Not surprisingly, TCP SYN and ICMP attacks remain most common attack vector
- Recent surge in DNS and ICMP rate-based anomalies

Attack Miuse subClass

•

- 10x uptick in DNS attack activity, likely result of much testing (and actual attacks) from DNS cache poisoning vulnerability
- ICMP is backscatter from attacks
- DNS activity back down to ~2x predisclosure rates

Bogon Summary

- 2.95% (22,153) of 749,672 misUse attacks employed at least one bogon attack source
- ~92% of that from 3 prefixes

Internet Attack Propagation

- Each color represents different anonymous ISP (30 represented)
- Each line represents different attack
- 7 Outbound ISPs, 10 attack streams (7 tcpsyn, 3 icmp) generating 6.312 Mpps, one Russian AV Vendor

darnyerovers more tood						May 27 2005 10-21 4M
Туре	Docume	Start	Duration ^{rectory} /PPS ²⁵⁵	BPS	Src	May 2 Dst2005, 10:31 Ports
8	icmp (Outgoing)	03/04/07 19:27:34	11:37 Disk Utility1.15 Mpps	549.64 Mbps	xx.xx.0.0/0,xx.xx.0.0/11	Aug 200.060.56.73/32AM
22	topsyn (Outgoing) ovies	03/04/07 19:29:18	11:35 FPSON Sca775-33 Kpps	297.59 Mbps	xx.xx.0.0/0,xx.xx.0.0/3	Apr 2 aa.bb.56.73/32 p80
22 cts	icmp (Outgoing)	03/04/07 19:29:18	11:35 3.84 Mpps	1.84 Gbps	xx.xx.0.0/0,xx.xx.0.0/3	aa.bb.56.73/32
10	icmp (Outgoing)	03/04/07 19:29:05	9:56 31.00 Kpps	14.88 Mbps	xx.xx.0.0/7,xx.xx.0.0/16	aa.bb.56.73/32
16 ^v (Last	icmp (Outgoing)	03/05/07 02:15:33	4:49 Grapher 273.97 Kpps	131.52 Mbps	xx.xx.0.0/0,xx.xx.0.0/11	Apr 2 aa266.56.73/32 M
16 tacks	icmp (Outgoing)	03/04/07 19:30:07	4:01: HP Printer 65,13t Kpps	31.26 Mbps	xx.xx.0.0/0,xx.xx.0.0/3	Jan 3, 00.66.73/32
16andwid	stopsyn (Outgoing) ctures	03/05/07 05:31:16	1:33 61.97 Kpps	23.79 Mbps	xx.xx.0.0/0,xx.xx.0.0/11	san 2 aa.bb.56.73/32 p80
16 _{ste}	tepsyn (Outgoing)	03/05/07 04:06:16	1:19 57.18 Kpps	21.95 Mbps	xx.xx.0.0/0,xx.xx.0.0/15	aa.bb.56.73/32 80
16	icmp (Outgoing) sf-ppt	03/05/07 01:30:16	32 mins. 30.48 Kpps	14.63 Mbps	xx.xx.0.0/0,xx.xx.0.0/8	Jul 25 ad.bb356.73/321
16	icmp (Outgoing)	03/05/07 00:33:16	49 minsua 27.62 Kpps	13.26 Mbps	xx.xx.0.0/0,xx.xx.0.0/3	Feb 1 aa266356373/32\M
[~]	affic:		🖗 Keychain Access			Aug 20, 2006, 1:59 AM
uunnyer	overx [Migration Assistant			Aug 20, 2006, 6:01 AM

Most Frequently Attacked Ports

- 640 days
- HTTP ports account for bulk of TCP-based attacks
- Fragmentation attacks lead the pack on the UDP front

Internet Attack Scale

Total Attacks

- Unique attacks exceeding indicated BPS threshold for single ISP
- Average of three 1-Gbps or larger attacks per day over 485 days of collection
- Two ~25 Gbps attacks reported by a single ISP (on same day, about one hour apart, duration of ~35 minutes)

Interesting Finding...

- Typical aggregate Internet traffic::attack_traffic ratio over past year is around 2%, although spikes like that illustrated below are common
- Two specific long-duration attacks (32.86 Gbps/17h30m & 22.36 Gbps/8h16m) contributing to most of the uplift below in January 28 chart

Attack Trending

- Small packets predominate (pps attacks)
- Spectral analysis-like fingerprints of other attack types and tools
- Some issues with data collection methodology

Most Active IP Prefixes

- High user-density prefixes see high activity rates
- Swamp space sees high activity rates as well
- Rolled-up here only to /8s for presentation purposes, underlying advertising prefixes more telling

Prefix	Target	Prefix	Src
87/8	7978	10/8	5289
192/8	7087	192/8	4844
65/8	4614	141/8	4715
99/8	3742	164/8	2924
80/8	3061	85/8	2700
89/8	1946	64/8	2439
10/8	1906	83/8	2057
72/8	1896	80/8	2047
66/8	1894	81/8	1769
62/8	1859	172/8	1587
193/8	1744	203/8	1510
84/8	1681	82/8	1464
195/8	1555	195/8	1395
69/8	1350	213/8	1391
200/8	1230	125/8	1289
81/8	1228	90/8	1282
216/8	1214	 62/8	1258
208/8	1197	61/8	1230
212/8	1166	218/8	1174
82/8	1129	212/8	1149

Attack Distribution Per /8

Multi-ISP Attack Source Countries

- 416 attack sources were reported across multiple ISPs, contributing to 5,078 total attacks
- Top attack source countries (ordered): US, CN, SE, JP, KR, RO, DE
- Attacking source PTRs in table below.

3(NXDOMAIN)	178
2(SERVFAIL)	11
com	73
net	37
edu	22
јр	16
de	10
ro	9
tw	6
se	6
br	6
ru	5
fr	5
pl	4
CZ	3
ch	3
arpa	3
nl	2
mu	2
is	2
hu	2
cn	2
са	2

Mutli-ISP Targets

- Top 13 Targets
- Most common IRC targets
- Interesting targets
 not listed?

Target	Attacks	ISPs	PTR
194.109.20.90/32	24	7	undernet.xs4all.nl
195.149.115.2/32	70	7	box1.freakshells.com
207.162.194.151/32	60	7	us.ircnet.org
129.143.67.242/32	29	6	irc.belwue.de
161.53.178.240/32	27	6	zagreb.hr.eu.undernet.org
195.144.12.5/32	11	6	undernet.it-ss.be
198.3.160.3/32	11	6	NXDOMAIN/Bandwidth.com
208.98.12.133/32	33	6	ip1064.prodhosting.com
62.94.0.22/32	10	6	irc.eutelia.it
04.137.13.117/32	14	0	yui.desync.com
64.18.151.101/32	10	6	i.hate.Dd0s.co.uk
60 16 172 40/22	25	6	ire? easynews com
80.244.168.23/32	31	6	mail.iparser.net

- Top 20 Sources
- Only 3 PTRs Exist
 SPAM PTR map correlation?
- 3 RFC 1918

Attack Source	Attack	ISPs	AS NAME (*PTR Exists)
202.196.225.134/32	72	8	ERX-CERNET-BKB
192.168.0.1/32	143	7	NA
89.160.52.135/32	64	7	SKYCOM-AS SkyCom Sweden
89.160.52.112/32	36	7	SKYCOM-AS SkyCom Sweden
82.183.102.167/32	88	6	TELENOR-NEXTEL T.net
82.183.102.89/32	55	6	TELENOR-NEXTEL T.net
192.168.1.2/32	104	5	NA
218.25.40.238/32	60	5	CNCGROUP China169
82.183.102.134/32	51	5	TELENOR-NEXTEL T.net
89.160.52.97/32	48	5	SKYCOM-AS SkyCom Sweden
200.213.204.6/32	44	5	*Embratel
195.67.217.233/32	30	5	*TELIANET-SWEDEN
60.217.20.234/32	28	5	CNCGROUP China169
210.251.205.234/32	26	5	*TDNC TOKAI DIGITAL
192.168.1.6/32	25	5	NA
60.21.215.165/32	23	5	CNCGROUP China169
66.180.202.39/32	17	5	CYBERVERSE - Cyberverse Online
202.139.8.110/32	14	5	OPTUSCOM-AS01-AU SingTel Optus Pty Ltd
60.0.38.176/32	10	5	CNCGROUP China169

Internet Traffic Challenges

- Balance commercial privacy with research and greater Internet interests
- Data normalization / extrapolation
 - Differing notions tier1
 - Many business units within an ISP
- Data availability to other researchers

Questions?

Danny McPherson (<u>danny@arbor.net</u>)

Craig Labovitz (<u>labovit@arbor.net</u>) Scott lekel-Johnson (<u>scottij@arbor.net</u>) Haakon Ringberg (<u>hlarsen@arbor.net</u>)